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Dendritic crystal growth for weak undercooling. Il. Surface energy effects on nonlinear evolution
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We extend the previous work of Kunka, Foster, and TanyBays. Rev. E56, 3068(1997] by incorpo-
rating small but nonzero surface energy effects in the nonlinear dynamics of a conformal mapping function
z(¢,t) that maps the upper-halfplane into the exterior of a dendrite. In this paper, we specifically examine
surface energy effects on the singularitiez@f,t) in the lower-half{ plane, as they move toward the real axis
from below. Until the time when any of the singularities of the corresponding zero-surface-energy solution or
a surface-energy-generated daughter singularity cluster comes very close to the real axis, the leading-order
outer solution is the zero-surface-energy solution in a strip of the lower-half complex that includes the real axis
(i.e., the interface There is an inner region around each singularity of the zero-surface-energy solution where
surface energy plays a dominant role. However, the scalings in such an inner region, and hence the equation
itself, must be modified when such singularities are very close to the real axis. The relative ordering of
anisotropy, surface energy, and singularity strength strongly influences the form of the inner equations and
hence their solutions. A singularity with initial strength weaker than some critical value is dissipated over a fast
time scale by surface energy effects, leaving no trace of the initial singularity. This cutoff in singularity
strength limits the size and growth rate of the interfacial disturbances that singularities generate. Also, the
variation of time scale over which surface energy acts, due to differing singularity strengths in an ensemble, is
shown to account for fy|*”? coarsening rate for some intermediate range of distaj¢espm the dendrite tip.
As in the case of the isotropic Hele-Shaw problg®n Tanveer, Philos. Trans. R. Soc. London, SeB48, 155
(1993], we find here too that each initial zero of gives birth to a “daughter” singularity cluster that moves
away from the zero and necessarily approaches the real axis, before dispersing. One effect of this “daughter”
singularity cluster, if it approaches the real axis before any other singularity, is to singularly perturb a smoothly
evolving zero-surface-energy solution. In addition, numerical and analytical results for a certain general class
of initial conditions indicate that daughter-singularity effects necessarily prevent an interface from ever ap-
proaching the cusp implied by the corresponding zero-surface-energy solution. Finally, we find that for a set of
localized distortions, the local rescaling of dependent and independent varigblesn an “inner scaley
leads to the original equations, with an effectively larger surface-energy paraf@d@63-651X%99)04501-§

PACS numbegps): 81.10.A]

I. BACKGROUND rabola in the far-field. A Peclet numbé?, was introduced in
accordance with

Dendritic crystal growth has been a subject of interest to
physicists, metallurgists, as well as mathematicians. The A=\mPePerfo\/P), (1)
most common example of such a growth is the well-known
ice crystal. From a physicist's perspective, dendrites constiwhich is clearly small for smalA. Based on the length scale
tute a relatively simple but important problem of pattern for-a, associated with the far-field parabola, a velocity scale
mation in nonequilibrium growtfhi3—5]. In metallurgy, den- U=2DP/a was identified, wher® is the diffusion coeffi-
drites are common to crystal formation in the manufacture ofient. aanda/U are used to nondimensionalize all lengths
alloys when the growth rate exceeds some critical value. Thand times. We determined that if the initial deviations from
literature on the subject is vast and reviewed #+-6], as an Ivantsov statéparabolic dendrite with a corresponding
well as in paper [1] of our current sequence of papers ontemperature profieare limited to anO(1) region near the
this subject. In this paper, we refer only to that work mosttip (region |), then the dynamic evolution of the dendrite for
directly relevant to the issues addressed here. the nondimensional time<P ™! involves theO(1) tip re-

In the first of a sequence of papers on dendritic crystagion only; in that region, the temperature is harmonic to the
growth for weak undercoolingil], we derived asymptotic leading order, with appropriate boundary and far-field
equations for weak nondimensional undercoolignondi-  matching conditions. It is to be noted that the derivation does
mensionalized appropriately, through a combination of latentot assume that the deviation from the Ivantsov state is
and specific heatfor a dendrite that is asymptotically a pa- small, only that it does not extend all the way to the far-field
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FIG. 1. Conformal mapping from the upper-hdlplane to the
exterior of the dendrite in the plane.
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whered, is the capillary lengthg,, is the specific healy, is

the melting temperature of a planar interface, ani the
latent heat. Further, in the abowve,s physically the nondi-
mensional curvature and+laf is a fourfold surface energy
anisotropy correction. Heré the angle between the normal
to the interface(pointing towards the meltand they axis,
while 6, is some fixed value denoting a direction along
which surface energy is a minimum. We define the set of
Egs.(2)—(8) with B=1 as the “standard problem.” We shall
see later that this problem arises time and again through a
local renormalization in the sma## limit near an approach-
ing complex singularity. The “standard problem” can be
solved numerically through a boundary integral method, as
will be shown in paper Il of this paper sequence, without
much of the difficulties for smalB.

Through a linearization of the equation fef¢,t) about
some generally time-dependent state, Mg were able to
determine an expression for the growth rate of an initially
localized disturbance in terms of the base state, through a
Fourier analysis, when the disturbance is far from the tip. In
the special case of a base state that is steady and is close to
an lvantsov state, the expressions for the growth rate were in
accordance with prior results?]. Interestingly enough, it
was possible to obtain the same results by analytically con-
tinuing Egs.(2)—(8) to the lower-half complex plane and
carrying out an asymptotic analysis for the linearized equa-

O(P~1) region. This tip-region dynamics was recast intions near singularities of, .

terms of the evolution of the conformal mapping function

from an upper-halt plane (= £+i %) to the exterior of the
dendrite in thez plane, wherez=x+iy (see Fig. 1 This
functionz(¢{,t) was shown to satisfy the following nonlinear
integro-differential equation for redl (i.e., on the¢ axis):

z=(H+iR)z, (2)
where
R(é,t)ZT, ©)

1 [+= d¢'
—H(&O)=H{R}(&)=— p ][_w Py R(¢' 1), (4)

(&) =K(&D +HIHIK(E ), 5
where
K(ED=[1+af(&D]x(ED), (6)
LB
K(gat)_ |Z§| lm ng (7)

2

f(ét)=1—cos46—6 )=1—Re< i e_i490> (8)
! 0 ? .

The integral in(4) is a principal-value integral. In the above,
the nondimensional surface energy paramgtés given by

It is to be noted that while the lower-hajfplane does not
correspond to any part of the physical domain, singularities
of z(¢{,t) approaching the real axis from below correspond to
interfacial distortions. In particular, we found that according
to the linearized dynamics, surface energy prevents an ini-
tially localized disturbance from remaining localized beyond
a certain time. Arbitrarily small initial interfacial distortions
(noise, representable by some singularity distribution in
Im ¢<0, significantly affect the interface later in time when
singularities of the associated zero-surface-energy problem
approach or cross If=0, even though surface energy lo-
cally smoothes out all singularities in the linearized dynam-
ics. The extent to which the zero-surface-energy singularity
dynamics relates to the growth rate and dispersion of distur-
bances for small nonzero surface energy was also uncovered.
Hence, zero-surface-energy singularity dynamics have both a
qualitative and quantitative impact on the physical predic-
tions mentioned above.

The relation between complex singularity dynamics and
the evolving physical features of a dendrite transcends the
restriction posed by linearized dynamics since a singularity
of the conformal map in Ing<<O can result in large interfa-
cial distortions when that singularity approachesZ0. In
particular, if we consider an isolated singularityt) of z, in
the lower-half plane so that

2,~Eo(D)({—¢s) P (10

near{={4(t), then if {4(t) is very close to the real axis, we
can expect a distortion as sketched in Fig. 2 that is locally
rounded off over a length scale determined by singularity
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face associated with Eq10) discussed above will remain
intact for a period of time, even when the actual singularity
at = {(t) is smoothed out or replaced by a cluster of other
singularities, provided there is some intermediate range:
Bo<|{—¢4(t)|<1 for somes>0 and some set of redlfor
which the behaviof10) persists.

Prior work for dendrite$1], as well as for the mathemati-
cally analogous Hele-Shaw probl€f®,8,9], shows that the
zero-surface-energy dynamics preserves the form of the
singularity—i.e.,8 in Eg. (10) remains invariant with time;
only its positionZ¢(t) and its strengthEy(t) evolve (except
for a pole whereg, is invarian}. When <0, the form(10)
is not invariant. Generally for an initial singularity of that
kind,

2,~Ao() +Eo()[{— ()] 77 (11

for ¢ sufficiently close tols. Such a singularity on the real
axis does not introduce discontinuity in slope, except in the
nongeneric case for which,=0 at the same instant as
FIG. 2. Dependence of the indentation geometry on the singulm £s=0. In this exceptional case, the corner is directed to-

larity parameteiB. wards the melt, in contrast to th8>0 case, when it is
directed towards the crystal.
distance—Im ¢, from the real axis. Note that iEq(t) is All singularities, regardless of their type, were shown to

sufficiently small and/ofim ¢ is sufficiently large, there continually approach the real axis with time, though for
will be little effect of a complex singularity, on the inter- =72 they do not impinge the real axis in finite time—indeed
face shape. The largéE,| (singularity “strength’) is, the the_:y slow down significantly as they come close to the real
larger is the impact region on the interface. Bggletermines  axis. _ _ o
the orientation of this distortion relative to thyeaxis. The A point wherez,=0, butz, is otherwise analytic, is re-
physica| effect of an isolated Comp|ex Singu|arity Corre-ferred to as a zero. The geometrlc distortion shown in Flg 2
sponding toB=1 (pole) is illustrated in Fig. 3, where, IS still valid if we associatgg=—1 with a simple zero, i.e.,
=Im ¢. a zero on the real axis corresponds to a zero-angled cusp on
It is to be noted that the geometrica' features at the interthe interface that protrudes intO the melt PI’iOI’ WOI’k reported
in [1] has shown that a zero remains invariant with time,
when surface energy is neglected, i.e.,

2,~2:¢(£o(1), D[ {— o(1)] (12

for ¢ near{y(t). The evolution equation fafy(t), however,
\ is found to be different from that of a singulariti(t). In
particular,y(t) may or may not approach the real axis. For
n'lE()I

some set of initial conditions, a zero does impact the real
axis in finite time. The mathematical solution for the dendrite
ceases to be physically meaningful beyond this cusp-
formation time.
The connection between the dynamics in the extended
0 (-IEgl log (-,)) domain Im{<0 and the physical features of an evolving
/ dendrite, as described above, is particularly useful, since

there is strong evidence that the zero-surface-energy dynam-
ics in the extended domain is well-posesse[2,10] for evi-
dence for the mathematically similar Hele-Shaw probleém
contrast to the ill-posed nature of the interfacial evolution
itself. In the latter case, the domain is restricted to/k0.
This well-posedness at the zeroth order mathematically jus-
tifies a systematic perturbation procedure in the extended
complex domain to study how small but nonzero surface
energy(with or without anisotropy alters the zero-surface-
energy dynamics. The viewpoint we followed jd] and
here, following the Hele-Shaw analysis with isotrd@y11],

is that the interfacial dynamics is a byproduct of the dynam-
FIG. 3. Geometry of a pole indentation; the logarithm is base e. ics in the extended domain.

tan”' (Im Eo/ Re Ey) /
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A necessary drawback to the above-mentioned procedurt
is that now one must specify initial conditions in the ex- n
tended complex domain Ii§#=<0, which obviously cannot be
done in an experiment where only the initial interface shape,
up to some nonzero error, can be controlled. Connection tc
the observed statistical features of an experiment can be
made only by studying the statistics of an ensemble of
complex-plane initial conditions, allowing for every conceiv-
able singularity distribution, and with each member of the
ensemble consistent with the given initial shape to within £
experimental error. Clearly, many different singularity distri-
butions can result in the same approximate interfacial shape -T~
However, an essential precursor to such a statistical study i VaRNe
the thorough description of the dynamics all possible P \
forms for singularities in Ing<<0. Only when this issue is \( )/
/ \
\

clarified can one proceed with the statistical study for an
ensemble of initial conditions. That such an approach may be
relevant to experimental observations is already demon-
strated in Sec. Il C, where we obtain coarsening result%o
based on an ensemble of particular singularities. However, in
general, the analytic continuation of¢,0) into Im <0, cor-
responding to a general analytic initial shape, can be ex- Further mathematical difficulties arise with initial zeros of
pected to contain natural boundaries and perhaps other sié;, since the full investigation of the dynamics at different
gularities that are not isolated. Further, even the class of alitages is hampered in many cases by lack of either analytical
possible forms of isolated singularities is too broad to studypr numerical solutions to a set of complicated partial differ-
only a small subset of possible initial conditions contains theential equations in the complex plane. It is to be noted that
specific classes of isolated singularities and zeros, as in Egthe mathematical theory of nonlinear higher-order partial dif-
(10) and (12), that are considered here. Nonetheless, suclerential equations in the complex plane is quite undevel-
isolated singularities, when they come close to the real axigyped. Progress in this case has been made in this paper, as in
do correspond to a range of interfacial distortions, dependin{?2], with additional ansatz on the dynamics at intermediate
on 8. For that reason, we believe that the statistical featurestagés). There is no direct evidence that these ansatz are
of the interfacial dynamics within this limited class of initial correct by themselves, though the careful numerical calcula-
conditions are not very different from what is observed intions of the interfaces themselves, for a sequence of compu-
experiment—with the additional proviso that a two- tations for decreasing surface energy, indirectly confirm the
dimensional theory is relevant, at least for scaling predicbasic features of the analytic theory, both for the associated
tions. isotropic Hele-Shaw problerfil2] and also for anisotropic
However, even within the class of possible initial singu- Hele-Shaw and dendrite problems. The latter work will be
larities studied here, there are basic mathematical issues coreported as paper Ill of this sequence of papers.
cerning the asymptotic matching of inner and outer regions Despite the qualifiers above and the fact that our method
in the complex plandas the surface-energy parameter goesiecessarily requires a lengthy investigation of complex dy-
to zerg that remain unresolved. In carrying it out in the namics involving many kinds of initial singularities with cor-
neighborhood of a singularity that is preserved by the zeroresponding inner equations depending on their distance from
surface-energy dynamics, it is observed that the matching ithe real axis as well as the relative ordering of anisotropy and
necessarily sectorial—the inner solution does not match theurface energy, this technique is the only one known for the
outer solution in every direction in the complex plane; it canfully nonlinear, time-evolving dendrite in the small-surface-
be matched in a certain sector origee Fig. 4 Thisis nota energy limit. This limit is precisely the most difficult to ex-
surprising result, since the steady dendrite problem is knowplore computationally, since resolving small capillary
to have the same features. However, unlike the steady prollengths necessarily strains the capacities of computers. Fur-
lem where there are well-defined global Stokes lines evether, even for cases whetis not small, the small-surface-
beyond the immediate vicinity of an inner region that deter-energy limit cannot be avoided at large distances from the
mine local sectors of matchingsee[12] for instancé, no  dendrite tip, where the curvature of an essentially parabolic
basic mathematical principle exists for the time-evolvinginterface becomes small.
flow. Only local Stokes lines, corresponding to local similar-  In this paper, then, we continue our study of complex
ity solutions of the partial differential equations in the inner singularities initiated ir[1] by including small but nonzero
region, can be identified. We invoke a matching principlesurface energy (€ 8<1) in the nonlinear dynamics in the
based on one used in the Hele-Shaw conf&kt The only  extended complex domain, generally taking anisotropy into
direct evidence that such a matching principle is sound is ouaccount. The purpose of this paper is to address, partly or
prior finding, in[1], that there is consistency between resultswholly, the following important issues.
from a Fourier analysis in the real domain and a complex (i) How does a nonzer# alter singularities described in
singularity approach involving inner-outer matching for the Eq. (10)? Do the alterations and maodifications to the singu-
linearized problem. larity stay confined to a small cluster aroutfigt)? Is there

FIG. 4. Schematic of sectorial matching. Arrows indicate direc-
n of matching toward the physical domain.
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an intermediate spatial scale over which the behaidify is (ix) How do surface energy and anisotropy modify or
relevant as$3—07? If so, is there a limitation on the order of confirm the coarsening scenario that we proposéd|h The
|E(0)| and the time for which this behavior persists? How selection effect of surface energy on an ensemble of assumed
does anisotropy in surface energy come into play? The maiingularities of different strengths is examined in Sec.
results relevant to these issues appear in Sec. Il C. IIl C 3, resulting in a prediction for the coarsening rate over
(i) What are the temporal and spatial scales over whict® fange of distances from the dendrite [ee Eq(124) and
surface-energy effects become important to the real axis dy:omments following it The daughter singularity effect and
namics for a singularity corresponding g>4? Recall that the concomitant selection of local tip characteristics are also

according to zero-surface-energy dynamics, such singularf—ound to qualitatively influence coarsening, as discussed in

ties do not impinge the real axis in finite time, though theysec' Vil.

continually approach it. This question is discussed at the end l\_Iote that while some of the issues listed appear theore_m-
of Sec. Il A. cal in nature, apparently related more to complex singularity

. . . . dynamics than the interface itself, the nature of our investi-
(iii) For singularities corresponding to<Q3<%, which y

K in the ab ¢ surf X h ation precludes meaningful separation of the two. For in-
are known, In the absence of surface energy, to Impact g, nce "\whether or not a singularity initially far from the real
real axis in finite time(leading to corners at the interface

axis is dissipated by surface energy before hitting the real

what are the smallest length and time scales associated Wilfyis determines if corresponding physical distortions at the
a small nonzera3, when Im{{(t)—0? The scales are dis- jnterface would eventually be observed.

cussed at the end of Sec. Il B.

. (iv).What can pe said Iabout the grgvvth rate of int.erfacia.I”_ PERTURBATION EXPANSION NEAR A SINGULARITY
distortions associated with approaching complex singulari- NOT CLOSE TO THE REAL AXIS
ties discussed above in Eq4)—(3)? How does surface en-
ergy, by dissipating weak singularities, determine a cutoff in In the analysis presented here, we restrict our attention to
the growth rate? How does anisotropy affect the result? Théingularities for whichg>0, since it turns out that a form
answers to these questions are explained in Sec. Il C 2. It g1 for <0, with Ag(t) strictly O(1), implies that surface-
often stated in the literature that interfacial distortions tha€nergy effects near the singularity locationat{y(t) do not
point towards the crystal appear to remain stationary in th&€rturbz; to the leading order. This fact means that the lin-
laboratory frame. Possible limitations on the time scale ovefafized analysis ifil] in a neighborhood of(t) remains
which stationarity is valid are discussed in Sec. iic 1, valid. However, there are special cases B0, with

(v) What is the effect of anisotropic surface energy on a o() =0(1), f(_)r V‘.’hiCh the Iinearizeq results discussed in
initial zero? Is there a “daughter singularityZy(t) that I1] cdal_qnort] be justified. Such exceptional cases are not ana-
emerges from an initial zer&,(0), as for thesotropic Hele- yzeh In t el cgrrent paper. f he |
Shaw problen{2,11]? If so, how does anisotropy alter the hal-1[ Ie ana ytlcdcct)ntln_uaegf]ntoqus{Z)—(8) to the lower
structure of the cluster of actual singularities Dfthat are “plane was determin 0 be
centered at4(t)? These issues are discussed in Sec. IV. 0—

(vi) How does a daughter singularity impacting the real z=C12;,+0,— B ¢ ¢ (13
axis affect the interfacial features? As with the isotropic Z
Hele-Shaw problem, can one expect the daughter singulari%here
impact time to indicate when an actual interface will veer off
from the corresponding zero-surface-energy solution? Sec- 1 (= dé&'
tions V B and V C deal with these issues. (L) =— f — R(¢&',1), (19

(vii) How are interfacial cusps, associated with the impact T &
of a zero{y(t) on the real axis in finite time, prevented by i
small surface-energy effects? Are small nonzero surface- Qu(Z,t) = 2i (15)

energy effects only important when the interface becomes Z.L,0)°
close to a cusp, i.e., when curvature of the zero-surface-
energy solution becomes large? Or, is it that the interface +o d¢’ )
never comes close to cusp formation because it necessarily o({H)=2K(, D+ i J_w &7 K(&h, (16
veers off from the corresponding zero-surface-energy solu-
}ion significantly before an)_(o(t) can impac'g the real axis. K(Z,H)=[1+af(,H)]x(LD), (17)
n the context of complex singularity dynamics, the two sce-
narios are distinguished by the following question: does a 1 (22 ~2
da.ughter singularity agzgd(t) necessarily impact the real f(Lt)=1— > (~_§ e 14004 _g e|4eo), (18)
axis before the corresponding zerogat {o(t)? ¢ %

(viii) What is the evolution in time of a given disturbance _
that may be associated with many different complex singu- K(Z,1)=— 1 Zy g) (19
larity distributions but causes @®(1) localized deviation in : 2izg%}3 z, 7))

interfacial slope from a smooth background state? Is there a

rescaling under which the equations remain invariant in thevhere

small-surface-energy limit? What does such an invariance -

tell us about the dynamics? F(Z,H)=F(*,1)* (20
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is an analytic function which is equal #* on the real axis, z,~Eo(D[ - L] 7P, (29
where* denotes complex conjugation. It is to be noted that

Z(¢,t) is analytic in the lower-half-plane(except ate). If ~ with 8>0. For 8<0, 8 not an integer, the local behavior is
expression(16) for w is used in Eq(13), one obtains generally given by

B ae 4% z,~Ag(t) +Eo(t)[£— (1) ] 77, 29
Zt:CI1Zg+Q2+§m(—ZZg”2)gg— . (%22/2)“ ~Ao(t) FEo(D[{—4s()] (29
¢ ¢ sinceAy(t) is generally nonzero. From the known evolution
equation[1], it can be deduced that the “strength” of the
(=32, %2) +Br(Lv), (21)  singularityEy(t) in Egs.(28) and(29) and its location(t)
evolve in accordance with

s sl2
Baemaozg

2i

wherer (Z,t) lumps together all other surface energy terms ¢
that contain derivatives of with respect toz of orders Eo(t)ZEo(O)eXL{(l—B)f dt’qlg(gs(t’),t’)>, (30)
smaller than the ones explicitly shown in EG1). 0

Beginning with the lower-half-plane E§21), we assume

a regular perturbation expansion in powers 8fin the L= —qu(Zs(t),1). (31)
asymptotic limit 53— 0. The regular perturbation is denoted
by The relationg28)—(31) characterizing the local behavior of a
singularity hold more generally, even when global solutions
z~zp+Bzy+- -, (22)  are not necessarily in the for(@7). In [1], it was also deter-
mined that for any in the lower half-plane, Ing;({,t)<0,
(s~ L5, T BLs, +00 (23)  which, from Eg.(31), implies that singularities of the type
(28) approach the real axi$Actually, all singularities, re-
=0, + BQ11+"' , (24) gardless of their form, satisfy the relatig®l).]

Zero-surface-energy singularity behavior depends on the
value of 8. Within the class of singularitie€8), we found

G2~ 02, + Bz, ++-- @9 that those singularities witB< ; reach the real axis in finite
time, whereas those corresponding 2c-3 asymptote the
o~ oot (26)  real axis fort—=. The caset<p=<1 remains unresolved.

We also found that among all singularities corresponding to
where subscript 0 has been used to denote the correspondipg. 1 simple poles §=1) approach the real axis exponen-
zero-surface-energy quantities that have been analyzed in thygly in time, but branch pointsg+ integer) approach alge-
previous papefl]. (Note: They appear without subscript 0in prajcally in time. Therefore, for a more general initial con-
[1]) dition that contains singularities of the tyg28) with many

different B, the indentations on the physical interface, over

A. Review of zeroth-order results the short run, will be dominated by poles approaching the

Substitution of the above perturbation expansion into Eqr€a! 2is-

(22) and extraction ofO(1) terms obviously leads to the _ _ _ _
zero-surface-energy problem studied in Sec. IV onwards in  B. First-order perturbation and nonuniformity near s

the previous paper. From prior wofk], we know that there The extraction of th@©(B) term in Eqs.(22)—(26) expan-

exists a solution to the zero-surface-energy equations fojon, on the other hand, produces the following equation:
which

1
NCOE (¢t Zy— Gy Z1;= U1, Zog+ Uz, + o+ =ap (— 229,
2o(L,0)=0(L,0) + 11(_—“ (-G A, @D o TRIETER 0 e T
= Pi —i4g 1405252
a0 gy a0

whereg(¢,t) andg;({,t) are analytic for Im{<0 and satisfy T%Z_ (5200) ¢ o
certain integro-differential equationg; is a constantpossi- ¢
bly different for eachj), N is an arbitrary positive integer, 2 o
and{;(t) evolves in time according to an equatids. In the X _§ZO£ (32

special cas@; =1, the term ¢— ¢;)*Ai/(1- B;) in Eq.(27) «
is to be understood as Iff ;). Exact solutions withg; all
equal to 1 have appeared in the context of the Hele-Sha
literature[13—-17] earlier and wd 1] also discussed such so-
lutions in the dendrite context.

The form of the solutior{27) means that singularities are .
preserved by the zero-surface-energy dynamics, a result {s= — A1, (Ls(1),1) = Bay, (£s(1),1), (33
known in the Hele-Shaw context from prior wofR,8,9.

Specifically, it is known that sufficiently close to any singu- meaning that we use the two-term perturbation expansion in
larity type (27), denoted in general by, we obtain Eq. (23), with

The nonuniformity caused by the presenceom)fzog in Eq.

32) can be overcome if the zeroth-order approximation to
the advective speed of a singularify is corrected as
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lo= U1l {o(0)=040), (34 E1(0)=E,(0)=E5(0)=0. (42)

: This set of linear first-order ordinary differential equations
£s1= — £s101,0(Ls0(1), ) = A1, ({so(1), 1), £1(0)=0. can be readily integrated, if desired. It is to be noted that
(35 the addition of a possible term in E@36) of the form
_ E1a(D)[¢— () 1% does not effect the equatior(89)—
The last three terms on the right of E(2) can clearly  (43) pecause of Eq(33). Similarly, an additional higher-
become singular wherzbg is singular, resulting in the pos- order term in the formf ¢ — £(t)117%2 or [¢— 4(t)]*7% in
sibility of Bz, in Eq. (22) being larger or of the same order Eq. (36) does not effect EqS39)—(42).
aszg, i.e., the assumed asymptotic expansi@g) then be- An explanatory note is in order about local beha\igr)
comes inconsisterfdisorderedl To determine if and when when|Ey(t)|<1. From exact expressions fag that contain
this happens, we have to study the local behavior rear singularities of the type considered here, one can expect that
={, of the outer-perturbation series. even forB>0, there is arO(1) correctionAy(t) as in Eq.
Since the local behavior of the zero-surface-energy solu29). Therefore, in order for the leading-order behavipr
tion zo,~Eo(t)({—¢s,) ~#, B>0 also induces a singular be- ~Eq[{—{4(t)] # to be valid, one must require
havior ofz;, when the correction to the singularity speed is 18
not accounted for, we seek a slight modification of the outer | £ &ol<|Eo[ ™. (43)

asymptotic expansion in the immediate neighborhood of he same restrictio43) must also hold for Eqs(36) and
singularity in the form 37) ‘

- _ -8 _ 8 Further, in deriving Eq(36), it was implicitly assumed
2 BoDIE— L(O] 7+ BEA(DLE= 4o(V)] that it is acceptable to repla@g, and global termgj,q, etc.
+ BaE,(1)[ £~ £s(1)]%2+ BaEg(t)[ £ — £4(1)]%, by the first few terms of the Taylor expansion &t {4(t).
(36) However, these terms have singularities¢at{s (t) in the
upper-half plane. We must therefore require that |
where , is determined in accordance with E@3). In the  <[{s— 5], i.e.,[{— s <|ng. Hence, wheris approaches
usual cases, the two-term local expansion above should irthe real axis, the domain of validity of E¢36) shrinks so
clude only one of the terms involving,, E,, or E5. How-  that Eq.(36) cannot hold on the real axis itself.
ever, by including all three terms in EB36), we make al- We now examine the behavior of the two-term outeras-
lowance for different possibilities depending f|Eo|), 8,  ymptotic expansior(36) in a neighborhood defined by Eqg.
and|Z— ¢4|. From Eq.(36), it follows that the leading-order (43) to determine if and when this asymptotic expansion be-
perturbation toz, has the following local behavior negr ~ comes disordered fdr<1. On integrating Eq937)—(39), it

={g: follows that the expansion indeed fails if any or all of the
following conditions hold.
214~ BLs (DEo()[{— L5, (1] P HHEs(D[ L~ (D)% () E3A0)/[Bt(¢{~{s)*"* ]=0(1): This condition

5 5 can be satisfied if the following conditior&a) or (ib) are
+ By (D[~ {5 (V]2 + aBs(D[{— {5 (D]=. (37 satisfied:

Substituting Eq(37) into Eq. (32), we obtain (ia) 0<B<2 and |{—{J=0(Bt/EZ?23(2-A)]

5,=3B-3, 6,=—3B—3, 63=3B8-3 (38 foranyt>0;

and the evolution equation for the singularity strength, (ib) B=2, t= ES’B/B< 1, t>f
E (1) —(38-2)qy. (£ (1), )E (1) in a subregion of— ¢,/ <EZ” where condition(i) holds.
0 (i) EJA0)/[Bat({— "% 3]=0(1): The condition
___BB=2)(B-4) (ag () can hold it eitherfia) or (ib) holds:
47505, (0,DEFAD) . : 712,9)72/6- 78)
0 (ila) 0<B<%, [{—{|=0O[Bat/Eg40)]*"*~"#
Eo(t) +(38+2)01, (Ls,(1), DE,(1) for anyt>0;
e MhBBEAT2BEHHES (ib) p=3, ti=Eg"/(Ba)<1, t=t;
= =72 ,

8iZp; ({s,().1) 18

in a subregion of{— ¢ <Eg”, where conditior(ii) holds.
(i) (£—¢5)P?T3I[EY(0)Bat]=0(1): This condition

'Es(t)—(%B—2)q10§(§so(t),t)E3(t) holds for any3>0 when (¢ —¢s)=O[E&%0)Bat]?(#*®
. <EYE.
40 _ _avsl2 0
_ e*p(58-2)(58 4)205(550(t)’t) (41) Note thatt;;>t; . Further, it is to be noted that the condi-
- BIEJA(t) : tionst;<1 andt; <1 for 8>2 andg>$, respectively, nec-

essarily require thateyg(0) be sufficiently small. When
with initial conditions Eo(0) is not that small, the regular perturbation expansion
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(36) does not break down fg8>2 when anisotropyr=0. ~ 7 O~

On the other hand, the presence of anisotropy Q) guar- 7 \ »
antees that there is a local region where the outer perturba- / \
tion expansion does not hold because condifidn neces-

sarily holds sufficiently close tg=¢;. . \

‘\d) ) L)
C. Results from inner equations centered at(t) / \ el Yot / \

As is well known in perturbation theory, the disordering / \ / \
of an assumed asymptotic perturbation expansion in powers / N S \
of B, as seen in the preceding section, suggests that one, S — SO Y
should seek appropriate rescaling of the dependent and inde- "',-f\, N T
pendent variables before determining the asymptotic limit .. o

B—0. This procedure results in an “inner” equation near ) ] ) )
(1) FIG. 5. Schematic of singularity structure in the presence of
s(1).

The arguments leading to the choice of these rescalingsStrongly anisotropic surface energya) Outer singularity z,

inati : - 2Eo()[{—¢s(t)]7 P, (b) size of inner regiorO(BA N+ u/b+6)
as well as the examination of solutions to the Ieadlng-ordefc) inner singularity(there are actually a countably infinite number

inner equation, are quite elaborate and are relegated to ARsinner singularitiesz,~ C(1)[ £ £in(1) 2%, (d) size of inner-inner
pendix A. The results depend very much on the relative Orregion (5421 (8+2195-ul-My,
derings ofEy(0), B, and a. In this connection, it is appro-
priate to note that iEy(0) is not independent df but scales
as some positive power @ smaller than 1, then while,,
would not contain such a singularity, there would be an in-
termediate term in the outer-perturbation expans$g) (be- In this section, we investigate the behavior of singularities
tween 0 and Lthat would contain this particular singularity. that are “too close” to the real axis for the results in the
Furthermore, if the anisotropy scales with some positive preceding section to hold. Here, one cannot simplify the glo-
power of B, instead of being independent of it, one would bal integral terms likey;,q,, as well as terms likg,, etc. in
have to similarly insert another, possibly fractional power ofEq. (21). Previously, we merely replaced such a term by its
B, into the outerperturbation expansi@®2). Nonetheless, Taylor expansion neaf={,. Now, the proximity of{, to
these changes do not affect the validity of E86) as the the real axis introduces too strong variations in these quan-
two-term outer expansion in the neighborhood of a singulariities. The condition “too-close” is more precisely defined
ity. We do not discuss a case wheEg(0) scales with a by requiring that Imis=0(13°), where B’ defines the inner
power of B larger than 1 since such weak singularities arescale appropriate for the case under considerditadiffers
seen to dissipate over a fast time scale, just as for thosler different B and E,, as will be shortly seen Such a
discussed below foE,=o(5%%). situation can arise in two different ways(i) {s(0) is “too

The main result from Appendix A is that an initial singu- close” to the real axis ofii) Z.(t), initially further out, is
larity of the type(10), which is initially not “too close” (in now “too close” to the real axis, something that must even-
the sense defined precisely in the next segtionthe real tually happen for ally(t).
axis, transforms into many singularities clustered over the Recall from[1] that for zero surface energy, isolated sin-
small inner region(actually, it contains multiple inner re- gularities with3> 3 do not reach the real axis in finite time,
giong around {={4(t). Yet, except for the case of weak whereas those corresponding tec@<3 impinge the real
singularities, there exists an intermediate regime defined byixis in finite time.(Recall that the casg<B<3 remains
Bo<|{—¢(t)|<1 with {—¢(t) in some complex sector, uncertain and will not be discussed hgfe. this section, we
where Eq.(10) holds for at leasD(1) times, or until{4(t) restrict the discussion of surface-energy effects to two sub-
comes “too close” to the real axis. Figure 5 illustrates thecases: 6.8<; and3;<pB<1. The case3>1 is not con-
inner regions around(t) for strongly anisotropic surface sidered here because we expect the influence of such singu-
energy. Pictorially similar results hold, though with different larities to be minimal over the time scale of tip advance.
scalings(see Appendix A for weakly anisotropic surface Prior numerical calculationglO] suggest that fopB signifi-
energy. The only exception to the behavior in EtQ) over  cantly larger than 1, the singularity approach towards the real
some range of distances occurs for an initially weak singuaxis is slow compared to poles, wif—=1.
larity, defined by the conditiofiE,(0)=o0(B”"). Here scal- We will be chiefly concerned with the derivation of con-
ing arguments reveal that on a fast time scale the singularitgistent inner equations, but with less discussion of the result-
will have dissipated so that there will be no trace of its initial ing solutions. The main purpose is to derive scaling results,
nature. Effects of singularities, therefore, will not be visible which shed some light on the spatial and temporal scales for
on the interface. This result, along with those presented iinterfacial distortions. Since the singularity location is close
the next section about weak singularities near the real axi¢p the real axis, there is no advantage in using the analyti-
limits the smallest observable length scales and the largesglly continued lower-half equatiof21). In this case, all the
possible growth rates of distortions at the interface that cagomplicated terms, lumped together in tBe(¢,t), become
be associated with complex singularities of the typ@). the same order as the other surface energy terms. It is more

[ll. INNER SCALES FOR SINGULARITIES
NEAR THE REAL AXIS
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convenient to directly analyze the integro-differential equa-Similar results hold for R&y<0, in which case&(t)

tion (2) on {=&+i0.

A. The case;<B=<1

As noted previously, fol3=0, singularities with3> 3
asymptote the red axis ag— . We know, from the analy-
sis in[1], that as a& <B8<1 singularity nears the real axis, it
tends to ==+, unless R&y=0 (a special nongeneric
case. For a singularity with; < 3<1, for whiché,— +« as
it nears the real axis,

Eo(t)~Cyt!2  &(t)~(21,t)Y7

e~ — Cat~ 20811, “4

t—oo,

— —o ast—o. There is an important difference, then, be-
tween the special casg=1 and other singularities in this
range: The initial singularity strengtk,, is preserved in the
B=1 case, whereas far< <1, at sufficiently long times,
the order ofg, is always large. Note that this latter point is
complicated by the fact that the exact relation betw€gn
andEy(0) is not known. In what follows, we take
Eo(t)=5"Eo(t), (48)

whereu=0.

We take— 74(t) =0(B°), wheredis to be determined as
below, and move toward a derivation of the inner equation.
For singularities that were initially at aB(1) distance from

whereC; andC; are positive constants related to the initial {no real axis. the result&td) and (47) imply that, at this

location of the singularity, antis given by

—_ 1 * ! d 1
'—;J_WR@ e, (45

which is assumed to be a constant, as will be the case for a

constant tip velocityeven if the far field is time dependent

For the casg8=1, however, the behavior is different, and

is given by

Eo()=Eo(0), &~(211)*2 (46)

and for ReE,>0, which necessarily corresponds to singulari-

ties for which&y(t) — + o ast—« (see[1]),

stage,
t=0(B 2%1A) for 3<pB<1,
(49
t12=0(— B*In(B)) for B=1.
We decompose the mapping locally as
z~2o(t) + BT AIG(x 1), (50)
E=E£()+ B, (51)

whereé (1) is the real part of the singularity locatiqfy(t).

2 t| With a view to finding an asymptotic expression for
nSN_CBeXF{_Re(EO) (E) } == 4D (). for small B, with y=0(1). we notice that
|
L E-E(D) = dER(ELD
H(§,t)—H(§s(t),t)— Cw (gl_g)(g/_gs)
B fs— € i fster E—&4(1) ,
- +Ls+q+£s_qd§ @ org & ey
§—&(t)

és—e d
+ + d¢’
— Esteg

f_ gs(t)

F =0 —&n] RE DT Rol&DIF

st ep
d¢
—és—eq

whereB?3<e;<B*'# andR, is an outer approximation &t
valid to within an erroro(B(2A~ 19721y for |£— &> €,
with the property that locally nea,(t),

Ro~|Eol 2L £ &(1)]%2. (53

Expanding €' — &)1 in powers of ¢—&), it is clear
that the first two integrals on the right of EG2) have the
asymptotic behavior, nedr= &,

(&' =l —&(1)

] [R(g/,t)_Ro(gr,t)], (52)

[ g eldf’{éj—gsf(:))z y

XRg(&',1).

[6—£4D)]? }
GErAN

(54)

The third integral on the right of E¢52) can be rewritten as

Gve [ &)
J[gs_el dé [(f’—gs)z "

[¢- &
(€' —EJ(E—&)°

}RO(gl ,t),
(55)
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which, when added to contributions from the first two inte-

grals on the right of Eq(52), written as in Eq(54), gives an
asymptotic contribution foB<1,
~H () Box +o(B#°#), (56)

where

(57)

~ _X (7 dE
H = fw(g g)ZRO(g t)

In the case oB=1, u=0, Eq.(52) has to be modified by an
additional contribution, so we have

H(£,t) — H(E(1),t)~ A1 (1) BPx+ H (1) B2y 2+ o(B?9),
(58
where
~ X dé¢’
H2: - 3(7 (g 55)3 RO(‘f t) (59)

In general, the last integral in E¢G2) gives a contribution
B?P972LH, where

ks dy’ - .
At = XJ( X R H—|Ed 2]

e X' (X' = X)

(60)
and
Riyp- 8 T m O, 61
(X! )_ |GX(X1t)|2 1 ( )
0 d !
Im QX: j{'_ % KX(X,t), (62)
1 .
Kix,t)=—|1+al1- G, G ReGle 4'00)”
1 G,y

“Ie.000l ! ( X)' (63

Combining contribution$56)—(60), we have finally that
H Ot ~H (xs(t), 1)+ BoxH (1) + B2 x?H(t)
+B2P 2R (x ) (64)

andH,(t)=0 for B#1.
With this approximation oH for y=0(1) and the result

R(£(x,t),t)~ B2 21R(x, 1), (65

it follows from substituting Eqs(50) and (51) into Eq. (2)

that in the limit5—0, y=0(1), wehave

G={H1() x+BHa(t) x*+ B# “[H(x,) +iR(x,.H)]}G,
(66)

provided we choose
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E()=—H(&g(1),1).

There are two distinct subcases examined below.

(67)

1. A not-too-weak singularity: u<pB/2
In this subcase, an appropriate choice #ds

_(I—p)
=5
which makes the surface-energy te@(l) in the expression
for R in Eq. (61). Since the inner region scales ik’
<B*'B, the outer asymptotic behaviag~Eq({— &) de-
termines the matching conditicﬁx~)fﬁ asy—+ow. We
also note that the ternB’H,(t) x?=0(B?°~*) only when
pu=0 andB=1, but is otherwise small and hence neglected.
That surface-energy effects cannot occur to the leading order
in O(1) time follows by noticing that if we were to write an
equation for the next order regular perturbation tegmthen
the equation has a forcirng |mw0§/(zg§) that is not large near

E=&4(1).

It is convenient to introduce the parameter

(68)

A=PBP—n, (69)

which is small in this regime. It is clear from E¢66) that
the surface-energy effects enter on a long time scale. If

T=At, (70)
we expect that
G~Go(x,t, 1) +AG (x,t, 1)+ (72)
which leads to
Goi=(H1)oGoy - (72
Since the integral occurring ifl, is in fact — 5/ 75, the
solution to Eq.(72) is given by
=Go(x/ 7(1), D=Go(X.1), (73
where
X=x!(—15). (74)

Fort<1, one gets essentially the zero-surface-energy solu-
tion, rewritten in the inner variables,

Go(x,t)~ 13 (x+i)=" (75)
where C,C3=B*(c/1-B) for B<1 and Ey(0)=cB* for
B=1.

It is convenient also to decompose b&tandH obtained
by substitutingG, =Ggy(— 75) into those expressions and

writing
H+iR=72[Ho(%, D) +iRo(X,1)]

— n Ho(X, D +iRo(% 1)1, (76)
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where
-~ o~ 1
RO(X’t)ZTz’ (77
~ ~ X dy’ ~ ~
Ho(x,t :—J[ ———— [Ro(%, 1) — ¢~ 2%%4], OB")>>B"
o= X(X_X)[o(x) X1
(78)
Im(Qo3)
=—— =2, (79
0 |Gogl® T
S dy’
H :_J[ Ro(x') ———=—- 80
o= T O(X)(X_X)X (80)
O(BH»IIZ [1/2)
Then,G; obeys
Glt(?(.t:f): — ﬂs(t)[no+iﬁo+ Hz(t)'f(z]Go;( _ FIG. 6. Stag_e wh_en sur_face energy becomes important at the
interface for aB=1 singularity.
+ (=G +[Ho+iRg]Ggy)- (81)

there is no fluid suction or injection, i.e., when the interface

We noteng(t) is integrable up té=<. Also, it can safely be relaxes due to surface energy effects only. It has been rigor-
assumed thalfi,(t) (which is an average feature of the in- Ously shown[18] that if the interface is initially close to
terface is bounded in time, so that the integralgi(t) H,(t) cwcular in a r_adlal geometry, it relaxes to a C|rcl.e: However,
exists all the way td=o0. Thus, the only term that can give numerlc_al ewdenc@l_g] suggesits that for a suff|C|er_1tIy de-
rise to a secular growth i@ (in this case a linear function of formed mterface(as in the shape of a dumbbgelthe inter-
) is the last term. We can avoid this secular growth by re-fAC€ ¢an pinch-off due to surface-energy effects. Extrapolat-
quiring thatG, evolve in slow timet in such a way that that ing that result here for this geometry, we expect thattfor
the last term vanishes >1, the interfacial deformation will relax to a planar inter-

' face unless the deformation is very large, in which case the

GoIZ(HoﬂL“'?o)Go}- (82) interface may pinch-off.

It is to be noted from Eqg44) and(68)—(70) that for fixed 2. Weak singularity: u>p/2

B<1, by the time surface-energy effects begin to have an Thjs case can arise only if the initial singularity location is
impact[i.e., t=0(1/A)], the disturbance causes a local in- o close to the axis that 54(0)= O(B*/#). Otherwise, from
dentation on the physical interface over an arc-length disanalysis of the preceding section, we know that, for
tance = B/3, the singularity is dissipated over a fast time scale,
s 1-p_ 151 before it can impact the real axis. So, we consider here only
OB n(1)* F=0(B"4 7). (83 singularities in this class that are initially very close to the

. . . . o .real axis.
This result is not unexpected, since a linear stability analysis ; o .
In this case, it is appropriate to choose

of a planar interface suggests that surface energy effects be-

come significant when the local wavelengthQgB?). 5= ul B (85)
For B=1, it follows from Eqs.(47) and(68)—(70) that by

the time surface energy becomes important, this pole wilgnd a fast time scale

have caused a relatively deep indentation on the interface

(see Fig. &, for t=pBL"2mb, (86)

T=0(~BHIn[— 7())=0(B* ¥2\[)>1, (84 Then, from Eq(66), it follows that the leading-order evolu-

with indentation width 7Eo(0)=O(B)> B2 since the 1OM €auation is now given by
condition u< B/2 translates tqu <3 wheng=1.

We do not discuss here the details of the borderline case Gi=(Ho+iR0)Gy, (87)
u=BI2, for which it is clear thah=1, so that there is no where
separation of slow and fast time scales. In the next subsec-
tion, we discuss the case of weak singularities fer A ) Im(Qo,)
>3. Ro=— ﬁ (88)
We note that while we have not discussed the solution to Ox

Eq. (82), there is prior work in the context of the Hele-Shaw . dy’
cell [18,19 that is immediately relevant since E(2) is HOZK ][ ho()(') X . 89)
precisely the equation of interfacial motion in the case when % X' =xx'
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The far-field matching condition in this case must reflect the We introduce inner space and time variabjesin accor-

local outer behavior dance with

Zoe~Ao(t) +Eo(D)[E— &) —ing(1)] 7. (90) E=E£(1)+ B, (93)
We do not solve Eqs(87)—(89) here, but note that such t=t.+ B2 37, (92
singularities for8<1 correspond to distortions of the physi- _ _ o _
cal interface that are localized over an arc length of wheret. is the singularity impact time fo8=0. We also

introduce an inner dependent variable,
O(Blﬁﬁ(lfﬁ)):o([gulﬁ)_

Z(£,0)=2zy(t)+ B °G(x,7), (93
For B=1, the total length of indentation associated with the
approach of the8=1 singularity isO(B* %<1, whereas Where
the width of the indentation is 1
prep? Z2aip 54

In either case, the smallest length scale associated with th&/e notice that with this use of rescaled variables,
disturbance is much smaller than the capillary length, and ,

from physical considerations it is expected to dissipate very Im(w)(£,1)=8""Im(Q))(x,7), (99
quickly [i.e., over at=0(1) scalg.

We therefore conclude that the weak singularities, ini-
tially close to the real axis, will be wiped out by surface-
energy effects over a fast time scale, just like similarly weal
singularities further out.

How do the results in Sec. Il A relate to queries in item
(i) in Sec. 1? If singularities of the typé<pB<1 are too
weak, i.e., u>pB/2, then they are dissipated by surface-
energy _e_ffects over a fast scgle so that the effect of such Zoe~Eo(t) (£~ E—ing) P for 85<|§—§S(t)|<E(1)’ﬁ-
singularities of the corresponding zero-surface-energy prob- (96)
lem are not relevant to interfacial deformations. Earlier in
Sec. Il C, we stated that weak initial singularities satisfying In order to obtain the leading-order inner equation, it is
the criteriau> /3 that are atO(1) distance from the real convenient to rewritdd(£,t) in the form (52). Substituting
axis are wiped out by surface-energy effects on a fast timgqgs.(91), (92), and(93) into Egs.(2), (3), (5)—(8), and(52),
scale before they can make their effects felt on the real axisne finds in the limitB— 0 the evolution equations
Thus, only those singularities satisfying the restrictibn

where Im(), is defined below in Eq(102). Thus, with the
choice of § in Eq. (94), the surface-energy terfi Im w; in
Eq.(3) is O(1). Thechoice of scale factors? 3% and B~ ¢

in Egs. (91 and (93 reflects the need to include surface-
energy modifications in the leading-order inner equation and
to matchG, to the outer solution, whose local behavior in
the matching region is given by

>pB=1% that are initially close to the real axis can possibly 74(1)=0, (97)
influence interfacial deformation only for a short time.

For stronger singularities, i.ey<<B/2, surface energy E()=—H(&(1),1), (98)
and anisotropy effects act on a much longer time scale than
the time scale of the dendrite tip advance, as implicit in Eq. G,=(H;+iR)G,, (99)

(70). The approach of such zero-surface-energy singularities
affects the visible features of the interface, though they davhere
not cause actual interfacial singularities, having failed to

reach the real axis in finite time. Since the polgg=(1) H X ][“’ dx'R(x’,7) (100
approach most rapidly, the interfacial features will be domi- 10X, 7) = 7 Jow X' (X' —x)’
nated by parallel-sided indentations that become deeper in
time, until surface-energy effects dissipate them over a long 1-1m(Q,)
time scaleB*~ Y2, over which there is no trace left of the R, 7)= —=T (101
. , : L |G, |
singular nature {— ¢¢) ~# of ;. The anisotropy, while im- X
portant in the inner-equation dynamics, plays no role in this 1 (= dy (oK
scaling. Im(Q,)=-— Y —x {E(X’T)}' (102
1
o The case &f<s KOun=[1+af(onlk(un, (103

In the absence of surface energy, this class of singularities
hits the real axis in finite time and the inner region arogpnd 1 _
is now defined when surface-energy effects appear in the f(x,n=1- W Re(Gie"‘”’O), (104
leading-order approximation &. Here, for the sake of sim- X
plicity of exposition, we will limit our discussion t&y(0) 1 G
=0(1), i.e., u=0. Weaker singularities dissipate even k(X T)= — Im(ﬂ). (105
faster and have an even weaker impact on the interface. |GX| G,
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Except for the differences betweeh andH, the integro-
differential equation(99) is of the form(2) with scaled vari-
ablesy and r replacingé andt, B being renormalized to 1.
The anisotropyx remains a parameter in the equations. In-
deed, the inner equations are the same for@(¥) anisot-
ropy, since on the real axi§=1— « cos 4(f— 6,) is always
0(1).

We also need the matching conditions to earlier time (
— —o) and to the outer solutiony(—=). The outer and
earlier-time solutions on the real axis are given by ©8).
Since

(B 172(1-8 ) )

s~ — B~ VI, (106)

Eo(t)~alBl_(2_ﬁ)5(— T)_Bll_‘w as 7— —o,

(107)

where the expressions foy; andE, are obtained fronjl],
the matching conditions become

O(B (1-28 ) /12(1-8 ))

G ~Ca(—7) P B yicy(— )] 8

. FIG. 7. Stage when surface energy becomes important at the
as x—ee or 7 e, (108 interface for a singularity with & g<1/4.

We do not know much about the solution to E§9).
However, a few things can be deduced simply from the scal=-i7(t) with | 7s(t)| sufficiently small corresponds to a dis-
ing in Eq.(93) and the earlier-time matching conditi¢t08). turbance centered at a physical poitz(¢4(t),t), where
It is clear that the disturbance associated with this singularitys(t) = —H(&4(t),t). However, from Eq(2), it is clear that
is localized in the physical domain to an arc-length distance
of O(Eq(0)B1L2AV2(=PA)(— )~ FIA-4B\ < Y2 for 7 q
=0(1). Itisknown from a local linearized stability analysis — 7(&(1), )=
that disturbances associated with local wave numbers much dt
larger thanB3~ Y2 quickly dissipate. Thus, it is to be expected

that the solutionss to Eq. (99) will tend to zero over a fast Eor each of the cases dealt with in the preceding subsection,
time scaler, perhaps even before 7=0, beyond which the it js clear that for singularities that do not dissipate quickly,
matching condition (108 cannot hold. Thus, beyond ihe right-hand side of Eq(109) is O(B#° #)<1. Thus as
O(B2(=A), after impact timet;, one can expect such 5.0 we obtain the asymptotic result that the corresponding
singularity effects to be absent in the interfacial indentationsz(gs(t),t) is stationary, but only on a®(1) time scale—the
A sketch(Fig. 7) illustrates the localization and indenta- time scale of tip motion.
tion caused by such a singularity before it dissipates, ad- There is a longer time scale, identified here as
dressing issuéiii) in Sec. I. O(B*~£9), over which the geometric nature of the inden-
tation also changes. We also note that without itliector,
C. Implications of scaling results for indentation dimensions the right-hand side of Eq109) is simply the normal velocity

Having discussed how surface energy affects singularitie f the mterface at a pqlnt corrgspondmggg(t). Over' the
close to the real axis, we highlight here a few implications'©"g€r time scale this indentation can advance alpnie.,
for spatial and temporal scales of indentations on the phys@©ng the tip-advance direction.
cal interface. As before, we defing in accordance to the
relationEy=O(B*). The subsections Ill C 1 and Il C 2 ad- 2. Growth of disturbances

dress issuiv) in Sec. I. It is possible to comment on the nonlinear growth of the
disturbances as a function bf, |y| being the axial distance
from the dendrite tip, provided we assume that the dendrite

First, we show that an indentation corresponding to thdip is moving at a constant speed. There is no assumption
approach of 83>0 complex singularity is stationary in the that the background state is globally steady, as assumed in
laboratory frame on th®(1) time scale over which the tip previous calculationgr,21]. It is clear that & dependence on
advances. Stationary indentations are well known in experithe growth of a disturbance translates into a simjyarde-
ment[20]. However, we are unaware of any analytical deri-pendence, sincgy|=It for a dendrite tip moving uniformly.
vation of this property for the fully nonlinear problem, In [1], we quoted the result that the localized disturbance
though it is a remarkably simple consequence of our formuassociated with the approach of a conformal-mapping singu-
lation (2). larity grows in a most pronounced way f@=1 (simple

Our results in the preceding subsection suggest that a dipole), causingz,, associated with this singularity, to grow
turbance associated with a complex singularity at &4(t) exponentially like

i[1- B Im wJ&(1),1)]
|Z§(§S(t)!t)|

(109

1. Stationarity of indentation in the lab frame
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1 2|y[\ 12 /
GX%FEO (—|2—> for ,8:1 (110)

if Re E;#0 and for

P~ i>|y/l|>maxX1,(Im Ey/Re Ey)?}, Iyl
o _ mlEgl >>B '
where it is assumedP > (Im Ey/ReEg)% Relation (110

implies that the depth of the indentation grows as
O(Eo/ReEqy2y/1?), while its width remains constant at
m|Eg|. When ReEg is small relative to InE, and _t

Im Eq)\2 y>ImE0
ReEy/ ~ |~ |ReE,

thenz, associated with the pole grows as 0(Uylr)™)

exp{ Yl ) (111 FIG. 8. Interfacial growth for a pole singularity with A&
Him Eo =O(E)=0(5").

lLJJ:]tI'énSf;teF'{ygEfzro|?;gioennoeun9ehr)i/(|; E;iélHt(\)/)vebveecroTr?: Z::'g_ for the results on growth rate to be relevant, it is necessary
0 9 ’ fhat B~2<|y|<B~**?*. Thus, we need

surface-energy dynamics places no restriction on how sma
ReE, can be. We now explore how surface energy does pose &<—pu+1. (114
a restriction. There are two subcases, depending on whether

or not the pole that causes the indentation is initially close tq=quation(110) implies thatz, associated with the pole lo-

a. Poles initially close to the real axidVe learned in
Sec. Il A that if poles initially located close to the real axis equlg—u—&& /|y|/|2). (115

are sufficiently weak, in the sense that-3, then their ef-
fects on the interface far from the tip will not be observedGiven the restrictior{114), it follows that the above is again
since they will be quickly dissipated by surface-energy ef-limited by Eq.(112), with corresponding indentation depth
fects. This leaves us with the restrictipn<3. Now, there A

are two possible cases to examinda) ReEq,=O(|E) B~\yn? (119
=0(B*) and(b) ReEy/Im E;=0(B%) for a>0. . " 1 . ,

(i) Growth rate for Re E=0(Ey)=0(B"). In this case, and width O(B )»_B . In the mtermedla_te case, when
it is clear that requitingu<3 places an effective restric- B “<|y/I|<B~2¢, it follows that z, associated with the
tion: ReEy>BY2 implying from Eq.(110) that the com- Ccomplex singularity grows like
plex singularity causes the associated localized deviation of _

z, (from the background stgt¢o grow no faster than exp(ky 5~ #|y/1[) (117

exp(k,B-Y2\|y|/1?) (112

for 1<|y/l|<P~! and |y/l|<B "2 (so that surface-
energy effects have not wiped out any remnant of this SINThe corresponding indentation depth in this regime scales as
gularity). In Eq. (112, the constank; is independent oB.

The corresponding indentation depfee Fig. 8 grows al- ly/1|. (119
gebraically as

and this is sharply bounded by an expression of the type

exp kB~ Yy/l|). (118

5 Notice, however, that for the largest growth rate> 3~ and
Vly|/ (113 hencex— 0—in that case, there is a shrinkage in the inter-
mediate range ofy| for which the above growth applies.

while the indentation width has a lower lin@(59). Itisto  Thys, in all cases, Eq¢112 and (113 accurately describe
be noted that ag becomes progressively closer to the lower ihe |argest possible growth.

limit 3, the upper bound112) is closer to being attained; |, pojes initially far from the real axiswe discussed in
however, the range df folr+\£vh|ch the growth result11)  gec. || C that singularities that are not too close to the real
holds is restricted sincB™*"“*—1 in that limit. axis, but so weak that > /3, dissipate on a fast time scale.

(i) Growth rate for Re B/Im Eq=0(B%)<1, with  Therefore, the effect of such singularities will not be ob-
Eo=0(B"¥). In this case|y|> B~ 2* before the resul{110)  served in interfacial indentation. Therefore, we have a cutoff
can apply. However, surface-energy effects become signifip < 8/3, which for poles means that
cant fort=|y|/U=0(B~1"2#), with u<%, and will dissi-
pate the pole indentation only over this long time scale. So, u<s. (120
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With this cutoff, it follows that if ReE;=0O(|E|), then the ments cited in the same reference, the kinetic coarsening
growth rates of the associated localized deviatioa, drom  exponents vary betweenand 3, though the authors express
the background state will be bounded by doubt about whether “asymptotic” coarsening conditions

were met in these experiments.
expk B~ 13\y/1?). (122

The indentation width, however, still scales with IV. PERTURBATION NEAR A ZERO NOT CLOSE

TO THE REAL AXIS

yn? (122 First, we note that general initial conditions, including

and its width scales a(59)= 5. On the other hand, if - et FEETEIR PORS Ba, B T BE e e eion to
ReEy=0(B“E,), then the previous analysis still holds yue. ’

yielding results(112) and(113). Note that anisotropy, while :Qi;r}glanllj (I:rr?eree;t220£h$2975eF;ant;aelrgSIS:ggf ng%rlgstgre Srzzl

important in the inner-equation dynamics, does not play angSo. v e ' '

role in the scaling above. ' '
We conclude by observing that surface-energy effects put

effective restrictions on the growth rates of disturbances as-

sociated with the complex singularities considered here. We We now examine how an assumed regular perturbation

A. Regular perturbation expansion and nonuniformities

have thus addressed the issues raised in gvindf Sec. I for z, in the form(22) becomes disordered near a zerq at
_ ={o(t). The procedure followed here is similar to that de-
3. Coarsening due to an ensemble of poles scribed in Sec. I, except that we replace powers[ of

In [1], we described a scenario for coarsening in terms of~ §s(t)] by [{—{o(t)]. In the neighborhood of a zero,
the approach of poles of differing strengths. However, in that _ _
B=0 analysis, there was no mechanism for scale selection. Zo;~Zoi(Lo(1), DL = o(D)], (125
We extend that scenario here by considering sun‘ace—energwhere the speed of a zero is given by

effects.

From the above results for a specific singularity, we could Uz (Lo(D),1)
alternately pose the following situation: Suppose there is an Zo=— 01 (Zo(t), ) — — . (126)
initial distribution of many poles, with varying strengths, sat- Zoz((Lo(1),1)

isfying ReE,=0O(E,). (Note, if ReE, is relatively too small
compared to Inky, the resulting interface distortion is more
in the form of tip-splitting than side-branchingsuppose we
examine large distancely| from the tip, but with|y/I|
<P™1, so that we are in region |, ang/I|<B1, so that —5/2 —or
! ' ' ~Aog(t)[{— Lo(t +aFo(t)[{— ot
surface energy has not dissipated poles for wHigh is 21~ Ao(DLE= ol aFo(D[£=Lo(V)]

It is found in a sufficiently close neighborhood &f(t) that
a particular solution te,; satisfying Eq.(32) has the local
asymptotic behavior

strictly order 1. We can ask the following question: What is (127
the value ofE, that contributes most to the indentation seenc,, t~o where
at that location? Since surface energy acts over a time scale '
B~1*2# it follows that the value ofx that contributes maxi- 3 257(Lo(1), 1)
mally is determined by the relation Ac(t)=— 5 =3 , (128
21 25/ (£o(1),1) 02 (Lo(1), 1)
B 24mly/1|=0(1). (123
_ _ 7w Zot(Lo(1), 1)
Values foru < u, correspond to larger R&, in the relation Fo(t)=— e'*% (129

. e 3/2 .
(110 and therefore have smaller growth rates. Poles corre- 4 ZOZ@(gO(t)’t)q24(§°(t)’t)

sponding to values oft> u,,, but within the rangeu<3,
will have dissipated before reaching(corresponding td
=|y|/1). Solving for u, in Eg. (123 and using E,,
=0(B*m), we obtain

However, the behavio(127) is not uniformly valid as

t—0" since for initial conditions independent oB,

z,(£,0)=0 is required. In order to correct EQL27) so that it

is uniformly valid for smallt as well, we notice that the
Em=kBl’2\/W (124) associated homogeneous equationziofrom Eq.(32) has a

solution zy; with local singular behavior

for some constarit. Therefore, the indentation width|E,y| e o

associated with such poles ®(BY2Jy/1). This can be Zn,~A(OLE= SO ]+ aF (D[ La(D)]

viewed as a coarsening characteristic. Wig| dependence (130

of coarsening, found here, differs from the theoretigat’®

rate found by Voorhees and Glicksmg22] from very gen-

eral considerations of a mean-field theory. However, there :

need not be any contradiction since the results quoted here {a(t)=—01(4a(t),1),

are valid for the intermediate range<ly/l|<B~1, before

surface energy has had a chance to fully affect indentations As(H)=A;(0)exp — §ftdt’q1 (L4t (132
of O(1) widths. It is interesting to note that, in the experi- 2Jo ¢ )

near={y4(t), where

(131
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t a) /——\\
Fl(t)=F1(0)eXp<—%Jdt’q1 (éd(t’),t’))- (133 b/
0 ¢ / Loy
' 1_\~_’
By choosing \\'\- / (-‘, //
o« -
£4(0)=20(0), A1(0)=—A0(0), F1(0)=—F(0), ~-7
(134
the sum of the local expressioli$27) and (130 tends to 7T
zero ast—0 for fixed {— {y#0, as required. Thus, a uni- // \\
formly valid expression irt for the local singular behavior / \ o
near={y(t) is | le)
\ |
21§~Ao(t)[§—£o(t)]‘5’2+ aFo(H)[{—Lo(t)] % \ /
\ /
+ALD[ L= La()] P+ aF (D[ L= Lg(D)] 2 AN 7
(139 T

. _ _ FIG. 9. Weakly anisotropic zero with emerging daughter singu-
Fort not too small, it is clear that Eq127) still describes the jarity. (a) Outer daughter singularity 2,~20,+ BA(1)[{

local asymptotic behavior. However, the introduction of a—z4(t)]7%? (b) size of daughter singularity’s inner region
new singular point at'={4(t) in Eq. (135, which moves O(BY3), (c) inner singularity (countably infinite in numberz,
with speed131), different from the speed of the zero located ~C(t)[{— £in(t)]1™*?, (d) outer zeroz;~ Zo; L L= Lo(D)], (e) size
at {={o(t) [see Eq.(126)], ensures that these two points of zero singularity’s inner regio®(5%7).
separate from each other with time. . ) )

This appearance of a new singularity means that the regiion leading to the local expressi¢h36), we assumed to
lar perturbation expansiozb£+ Bz, +--- breaks down at a be independent oB. However, that is clearly not necessary

. . . : for the validity of Eq.(136). Even if « scales as some posi-
(Fj)glsnc;[ri%jéfj) ,b;vhere its local behavior for not too small is tive power ofB, the local behavior of the outer perturbation

expansion is still determined by E(L36), even though the
2,~ 20 (La(1), D)+ BAL(D)[ £~ gd(t)]‘w ansqtz(22) needs to be modified to account for a possibly
¢ fractional power off3.
+BaF ([ = a(t)] 72 (136
B. Inner equations around ,(t) and &y4(t)

Note that the zero-surface-energy solutzaréj is neither sin- Near eachto(t) and Z4(t), we noted already that the as-

gular nor zero af={4(t) for t>0. This new singularity we g med asymptotic expansion in powers Bfbecomes in-
hame, as elsewhergf. [2,11]),_ a_l_“daughter singularity,”  yajid, suggesting the need for inner expansions centered at
since it is “born” out of the initial zero{o(0) att=0" ;) and ¢4(t). The arguments for finding the necessary
through surface-energy effects. Note that this daughter sinscalings in the inner equations are very involved and de-
gularity, at{={4, moves like any other singularity of the pend not only on the anisotropy, but also generally on time.
B=0 problem, and therefore necessarily approaches the regince the dynamics of the inner scale does not directly affect
axis, unlike its parent{o(t), which may or may not. We e interface shape when daughter singularities and zeros are
emphasize that a daughter singularity corresponding to eaGipt close to the real axis, we have relegated this set of argu-
initial zero is not a singularity of, or evenzy,, but only of  ments to Appendix B. What emerges from these scaling ar-
z;,2,... of theouter asymptotic expansiof22), which is  guments is summarized in Fig. 9 for a weakly anisotropic
itself invalid at{={¢q. case[a similar picture holds for a strongly anisotropic case

At very early times, there is no distinction between the(see Appendix E though with different Sca"nd.s_a Zero
inner region of the daughter and that of the z&t) of z, .  spawns a “daughter singularity,” with both the zefg(t)

As we will see in what follows, similar to the isotropic Hele- and the daughtef,(t) defining generally separate inner re-
Shaw flow, the solution to the inner equation contains manyions that contain clusters of actual singularitiezof Fort
actual singularities of,. Thus,{4(t) defines the center of a sufficiently small, these two inner regions are initially part of
(daughteyr singularity cluster, until the time whefy(t) im-  one inner region aroundy(t) when {4(t) is sufficiently
pacts the real axis. Beyond that time, all the actual singularielose to {y(0). Since the daughter singularity §t= 4(t)

ties within such a cluster disperse. The concept of a daughterecessarily moves towards the real domain, its effect must
singularity cluster ceases to be meaningful beyond the imeventually be felt at the interface, though other singularities
pact time. can significantly shield its impact ov€¥(1) time (see[11]).

An examination of the equation f@, (andzs,...) indi-  The zeroly(t) is not actually a zero of,, when surface
cates that there are no further points aside frégm Zo(t), tension is included; however, it remains a zero in the sense
andZ4(t), where the regular perturbation expansion in pow-that there is an intermediate scales[li —¢,(t)|>B?" in
ers of B becomes disordered, a situation similar to what hasome complex sector, where Ed.2) is still valid—i.e., it
been found in the isotropic Hele-Shaw sett{r&. We con-  remains a zero in the outer-asymptotic sensB-a<. It is in
clude this section by noting that in the perturbation expanthis sense that we continue to referfig(t) as a zero.
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The inner region aroundy(t), on the other hand, plays Eq(1)=—H(E4(D),1). (139
no role in the interfacial dynamics unlegg(t) comes close ’
to the real axis, which, unlikéy(t), may happen for certain  From the results in Appendix B 1A, it is clear that a
classes of initial conditions. However, it is possible that thegyitaple choice of inner spatial variable whenlm ¢

zero-surface-energy motion ofg(t) towards the real axis = — =0(BY3) is

. . Lo . d

is thwarted by a daughter singularity impact on the real axis

which modifies the shape of the interfd@nd hencey; and x=B" Y - &4(ty)]. (139
02, in Eqg. (126)]. This indeed happens for certain initial

conditions, as exemplified ifl1] and Appendix C. Since, the outer matching conditionzg,(4(t),t), which is

In the following section, we discuss scalings for the innerO(1), it follows that the dependent variable should be de-
equations, when a daughter singuladtyt) or a zerofy(t)  fined through
is so close to the real axis that the results of this section are

no longer valid. 2(&,t)=2o(tg) + BG(x, 7). (140
V. INNER EQUATIONS FOR DAUGHTER Going back to Eq(2), it is easily seen that this evolution
SINGULARITIES OR ZERO must occur over a fast time scale, given by

CLOSE TO REAL AXIS
r=B""t—ty). (141

As in Appendix B, it is convenient to define so that
Substituting these inner scales into ER), we find that the
a=DB", (137 leading-order inner equation at this stage is

where \=0. The localized equations of the for®4) (in G =QuGy Qa2 (142

Appendix B do not remain valid for strong anisotropi (
< 1) when a daughter singularity comes witt@y{32(1*1)/?)
of the real axis, andD(BY%) for weak anisotropy X>1)
because it is no longer possible to replace global quantities
such asg,, g, andZ; by their leading-order Taylor expan- \yhere
sions at{={y.

with matching condition

G)((X’T)Nzog(gd(td)!td) as y— =, (143)

As for singularities, surface-energy effects enter into the 1 (= dy’
global integral terms at the leading order and thus define new Qilx.7)=— ][ G (144
inner scales. However, the appropriate scales depend on what —e XXX
is inherited from the earlier stage and are therefore different i
for the cases of weak and strong anisotropy. _
However, in each case, we will see that at first the Q:lx.7) Gy’ (149

surface-energy effects within the inner region are not impor-
tant to the leading order over the fast time scale induced byhese inner equations are the local equivalent of the zero-
the nearness of a daughter singularity cluster close to the realirface-energy equation that was studiefllih when exam-
axis. During this zero-surface-energy phase of evolution, théned on the real axis, so surface-energy effects have disap-
inner singularities within the daughter singularity’s inner re-peared from the leading order. We know that Ef42),
gion advect toward the real axis, causing the daughter singiwhen studied in the regf domain, is ill-posed, but is well-
larity’s inner region to get closer to the real axis, at the samgosed in the extended domain that includes the lowerpalf
time continually spreading along the real axis. This effectplane. Therefore, prediction on the dynamics of E#2
leads to a break-up of the daughter singularity cluster intanust necessarily involve information on the initial condition
subclusters. Finally, surface energy becomes important at tHg the lower-half complex plane; i.e., we need to know the
leading order when these subclusters come withi® 68?2 details of the inner solution around a daughter singularity
distance of the real axis. The resulting scaled inner equatiohefore it strikes the real axis. This information is not readily
is found to be the same as the original equationerl, a  available to us, since the inner equations in Appendix B have
problem that has been studied numerically and will be reyet to be solved.
ported in paper llI of this paper sequence. Such a renormal- Nonetheless, a few conclusions can easily be drawn. We
ization in the dynamics allows us to understand the effects oknow for instance that a daughter singularity cluster contains
the daughter singularity cluster in selecting locally steadymany weak singularities, each of which appears to beja
dendritic characteristics. singularity ofz, (see[2,11] for related Hele-Shaw results
except on an inner-inner scale. A3 singularity of the zero-
surface-energy problem is known to asymptote the real axis.
Further, it approacheg= + like =2 as it approaches
We try to find inner variables around a poifyf that ini-  the real axis liker— Y2
tially coincides with Re&y. While the concept of daughter Thus, the daughter singularity cluster spreads out akpng
singularity {4 does not makes sense beyondty, when axis with time as
Im Z4(tg)=0, &4(t) will be defined beyond this time by evolv-
ing it in accordance with |&in— &4l ~BYS(t—tg) Y2 for 1>t—t>BY2 (146

A. Weakly anisotropic case: A>3
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The correspondingy width of this cluster, defined by the crystal tip is governed by the standard problem, even though
maximum distance to the real axis of individual singularitiesthe zero-surface-energy solution by itself does not indicate
within this cluster, shrinks like (through theB=0 interfacial curvaturethat surface-energy
effects become important at the tip.
| il ~ BY3(t—tg) Y2 for 1>t—t>BY3. (147
The daughter singularity cluster flattens against the real axis, B. Strongly anisotropic case: A<z
and whent—ty=0(1), theflattened inner region has width Since in this case the outermost scale around a daughter
BY6 and thicknes#s'/% at this stage surface energy becomessingularity is known to be proportional @(B#9(+V)y just
important. before the daughter singularity impacts the real axis, we ex-
We now consider the evolution of a cluster of singulari- pect that the appropriate scale here is
ties at{= ¢;,, moving along the real axis after the daughter

singularity’s inner region has flattened. We examine an inner x=B"CPOINIE—¢4(tg)], (160
region about;, (since &y no longer makes senseNe also 2L
require surface energy effects to be important at the leading Z(§,1) ~zo(ty) + B G(x, 7). (167

order. The appropriate inner variables are o . . .
pprop Substituting into Eq(2), it is clear that the evolution at this

x=BY1&- &40, (148  stage proceeds on a fast time scale
=B Yt—t,), (149 =B~ RN (t—ty), (162
2(£,1)~2o(t) + BYG(x,7), (150 2(£,1)~2o(tg) + BZITVG(y, 7). (163
where We find that the inner equations are the same as the zero-
. surface-energy equatios42 and(144), though with some-
En=—H(&R(D),1) (15)  what different definitions of5, y, and 7.

_ ) ) Since the leading-order equation is just the equation for
andt;, defines a time whemy;,=O(5"?). The inner equa- zero-surface-energy dynamics, it follows from result§ i
tions are that individual singularities within the daughter singularity
cluster approach the real axis over the time scale

G.=(H+IR)G, (152 O(BPP(TN) - Once individual singularities are within a
with smaller[ O(BY?)] distance of the reaf axis, by which time
the daughter singularity cluster will have dispersed signifi-
H(x,7)=—H{R}x,7), (153  cantly, the inner equation is once again given by the standard
problem, as defined by Eq§152—(158 above. Computa-
1-Im(Q,) tions to be reported in paper 1l of this paper sequence sug-
R(X,T)IW, (154 gest that the asymptotic long-time state for the standard

problem is independent of the far-field and/or initial condi-
9K tion. This result is significant because it suggests that the
Im(Q,) =H({9—] (x,7), (159 “standard problem,” as it arises in differing contexts, with a
X dissimilar initial and far-field matching condition, has a
“standard” long-time behavior for all cases.

K(x,7)=[1+af(x,7)]x(x,7), (156
1 C. Inner equations for zeros near the real axis
—1_ )
flx,7)=1 |Gx|4 Re(G,e ), (157 In this section, we investigate the behavior of a zero that

is too close to the real axis for the analysis of Sec. IV to be
G,y valid. This can happen either becaysel(0) was initially
e (158 very close to the real axis dii) Zo(t) came close to the real

k(x,7)=— |G_ Im
X axis later in time. The arguments below do not distinguish

N

The far-field matching condition becomes between the two cases. It is to be noted that evidence dis-
cussed in the next subsection indicates that the scefigrio
G, (X, 7)~Zoi(lin(tin) tin) @S x—°. (159 is not possible.

_ _ . We begin with the equations written on the real dx&—
Thus, the evolution of a neighborhood of the interface, whergg)] and use the inner variables

complex singularities associated with a daughter singularity

cluster approach, is governed by the “standard problem,” as x=B"YW - £y(1)], (164
defined in Sec. I.

Since each cluster is governed by the standard problem, =B Yt-t,), (165
the entireO(BY%) region adjacent to the daughter impact
point is governed by the standard problem witk 1. Espe- 2(£,1)~2o(t) + B23G(x, 7), (166)

cially important is the impact with the origin of the daughter
singularity related to the Ivantsov zero, insuring that the IM(w)(£,)=B"11m(Q,)(x,7), (167



PRE 59 DENDRITIC CRYSTAL GROWTH FQR ... . 1l.... 691

wheret.=0 for case(i) and equals the time when 1g(t)  and one for which the sink is at infinifyi1]. Analogy with
=0 in case(ii). Then to the leading order @—0, with  the dendrite as far as daughter singularity impact preceding

x=0(1), weobtain the zero appears to hold only in the latter case.
zy(t)=0. (168
. . VI. NONLINEAR LOCALIZED INTERFACIAL
The evolution ofG(y,r) is seen to be governed by Egs. DISTURBANCES
(152—(158), i.e., the standard problem. Note, however, that
the definitions ofy and 7 differ from those previously de- Given our observations that daughter singularity impact is

fined. We also note that the inner equations are independeta be expected for a generic initial condition, and that this
of the relative ordering of anisotropyand surface energl,  impact causes active features of a dendrite to be formed with
sincef cannot be large. appropriate orientation of minimal surface energy directions,
The initial-/far-field matching condition in our case is ~ we inquire into the evolution of a disturbance that is initially
localized, but causes a stricty(1) change irg,. While the
G,~ci(x+co). (169 importance of studying this particular kind of disturbance
can be understood better in terms of the expected daughter
Therefore, the evolution in the inner region around the tip Ofsingu|arity impacts, there is no necessity of relating such
an initial near-cusp with small surface energy is exactly theocalized disturbances to any necessary singularity in the
same as the evolution of an initial parabola wif1. In. complex plane. The fate of such disturbances follows merely
paper IlI of this paper sequence, we solve the dendrite prolfrom the assumed scalings of the disturbance on the real axis
lem numerically using a boundary-integral approach, basegnd the findings of paper Ill on the limiting dynamics on the
on Eq.(2), for B=0(1). By doing so, we will also find the inner scale.
fate of an interface that is initially a near-cusp. The scaling We introduce, as before, the local scaled variable
introduced here then determines an evolution time scale for
B—0.
X=({—&)le, (170
D. Which one reaches the real axis first—the daughter

singularity or the zero? . o .
where e is a measure of the localization of the disturbance.

Given the dramatic effect of daughter singularities on the\NhenX= O(1), it is appropriate to introduce the local vari-
real-axis dynamic$i.e., interface shapgea relevant question able G(x,t) through

is whether a daughter singularity(t) necessarily strikes the

real axis before its corresponding precursor z&y@), with

which it initially coincided. This is an important question for 2(L(x,1), 1) =2zp(£4(1), 1)+ G (), 1). (171

the following reason: Recall from the zero-surface-energy

dynamics that a zerdy(t), if and when it approaches the

real axis, causes an initially smooth interface to form a cuspThis scaling ensures that for=0(1), the deviation ofz,
Surface energy is expected to prevent cusp formation; howfrom z,, is O(1). We also note that localized disturbances
ever, if indeed aly(t) approaches the real axis, one would where|z,|>1 can also be accommodated in the inner equa-
expect that ag— 0, a near-cusp forms. On the other hand, iftion obtained forG since none of the assumptions made in
{q(t) always approaches the real axis before the correspondieriving the equation folG is violated when|G,[>1 in

ing {o(t), then the interface can never come close to cuspedome localized neighborhood in thedomain. We note that
shape. This issue appeared in the mathematically analogoasy localized disturbance in th¢plane for which|z,|>1
isotropic Hele-Shaw problem before and will also be dem-must have an outer-inner region for which the scalihgl)
onstrated for the anisotropic case in paper lll—the impact ofs appropriate, as otherwise it is not possible to match with
a daughter singularity causes the interface to veer off froman O(1)zo,. We note that the requirement that the wave
the corresponding zero-surface-energy solution even whepacket be spatially concentrated aroumeé,(t) implies that
the interface is smooth and far from forming a cusp. As thean appropriate boundary condition @as|y|—o is given
shape changes, so does the motiorgg(t) and numerical py

evidence shows that this change is enough to pregg)

from ever coming close to the real axis. Thus, if the answer

to the question posed above is in the affirmative, then the G,—2Zo,(Ls(1),1), (172
cusp-forming solution found ifil] has no physical signifi-

cance; the actual physical interface will have veered off from

the idealized solution much before the solution comes closwhich is a constant. A comment is in order about the initial
to forming a narrow structure. In Appendix C, we presenthypothesis that there is nescale variation ofzy(Z,t). As
some evidencéboth analytical and numerigabased on cer- shall be seen in the derivation of the equations, this can be
tain classes of initial conditiongoles, to support our con- relaxed by just assuming that there is no small-scale varia-
tention that daughter singularities always arrive at the reation of z,, within an e neighborhood of s(t). This allows us
axis prior to their corresponding zeros. It is to be noted thato include in this formalism multiple wave packets that are
in this respect, there appears to be a difference betweenlacalized on different parts of the interface. Wighas given
Hele-Shaw interface driven by suction at a finite pqi2f] by Eqg.(172), it is easily seen that
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Bl oot~ S m@ =B j[w ] m S 173
m(wg)(gs €X, )N? m( X)_ p . X/_Xa_Xr |GX/| m Gx’ (173
It is also clear that
1-Be 2Im(€,)
R(éstex,t)=R(x.t)= |G |2 . (174
X!
Now consider the asymptotics &f(,t) for y=0(1) in the limit e—0. The integral folH can be broken up into
HE(x D, D=H(x, )+ H"(x,b), (179
where
HO y,t) = Fsm_&+ F 9% R (176
X —o gty+o| E—&s—€x n
in Sle d)('
H ,t = ,—R ,,t . 17
(x.,t) e X=X (x':t) 177

In the above g is a constant conveniently chosen with the restricignd<<1. The end result of the asymptotic analysis will
yield answers completely independent®fSince,R(£,t) ~R%(£,t) outside ane neighborhood ofy, it follows that

o _ 1] (&2 [~ 1 €x 0 (52)
w7 +JS+5|§—§S<0 ! [g—gsm]z]R (E0dE]+0| ). (178
which can be written as
HE00) ~ o)+ eH(0) X+ —5 [R(&— 8,0+ RO(és+ 8.0
Sle dX B
——][ I [RO(&s+ ex’ 1) + exRY(és+ ex' )]+ 0(2572), (179
where
1 (= d§
HO(t)_ ; o g_ gs Ro(é‘:!t)l (180)
1 (= dE
Hi(t)= 3 s Re(&.1). (181)
Further simplification of the asymptotic seri€lsr9) is possible, giving
2exR° 2
HOU , t)~Ho(t) + eH1(t) x+ %fs’t)— = SRY(E,D)+O0(2572,€8). (182

Now, we examine the asymptotic behavior l8f'(y,t). Using the fact thaiR(y,t)—R%(&+ ex,t) rapidly as|y|—oe, it
follows that

. 1 (1 't R ") RO&stex t

. 0
][ J[,5/ } [R (§s+I6X 1) le RO(éo+ ex' )
Sle 1 X

+0(e2672?), (183
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| e

2
+—= p (o G)R (&s,)— RO(%Svt)[__l

R(x t) ROéstex',t)  x ,
SX, N RO(£s+ ex',b)

A 1 (1
H'“(x,t)~;£ R(x' t)+

+0(€2572). (184

On combiningH®* andH™, we find

, R(x".H)

1 (1
H(fs"‘GX-t)”Ho(t)+€H1(t)X+;][ﬂdX X —x

o

2¢ 2x
- Re&s )+ — X RO(£,1)+0(€2672,€9). (189

7 — 2 RO+ ex' 1)
Y X2 sT EX

[R(X D RU(éstex'.)  x

Note that the above is true for any satisfying e<6<<1. 1
We now take the somewhat more restrictive ordering Gi=— [eH (D x+H O, +iIR(x.)IG,. (193
1> 5> €2, for which case the expressigh85) determines
Hto o(e). On integrating by parts the last term in the secondNotice that if we introduce a change of variable,
integral in Eq.(185), and using

Xx=F()v, F(t)=e fodtH), (194

1 d)(' 0 , 2€ 2
J[l 7 R(Estex’ )= — R(&s,1) + O(e%), then we obtain
(186)

1
= 1e i
it follows that up to and including(e€) terms, GTl(V’Tl) € [HE(r D +TR(v,D]G,, (199

H(&s+ex,)~Ho(t)+eHy () x + H9(x,t), (187) ~ where

t
where lef F(t)dt, (196
0
1 (= R(x'\t) RU&t+ex' b
(€) = — 4 — i
H'(x,1) p- J[wd)([ o —x v - with
(189 B
R(v,t ImQ, (vt 19
It is clear that (0= Gu(v t|2[ F(te (0] @9
HOXD—H(x.D) for e—0, (189 ~ and
1 o dV, J 1 G 1o,
where =— — .
Im QV(v't)_ ™ J[—OG v'i—v v’ |GV’| Im( GV’ )}

1 (= dy’
Hoev=— [ Froew. aso (199
XX In the above, it is clear th&(t) is an increasing function of
time; thus effective spatial localization of the disturbance is

The evolution equation then becomes oo N .
actually eF(t), which increases with time, corresponding to

=[H+iR]G,, (191  “Zeldovich stretching.” It is clear from the above that the

evolution on a shortee spatial scale also occurs on a faster
where O(e) time scale. Now assumg<1. We notice that the fast-
est time scale that appears@5Y?) as in the case of lin-
T=t/e. (192 earized disturbances and this is for disturbances with

=0(BY?). For such localized disturbances, terms arising
This equation describes the disturbance evolution §or from the product of surface energy and curvature play an
=0(1) over the fasD(¢€) time scale; however, it is inaccu- O(1) role, as in the linearized analysis. However, the non-
rate over theO(1) time scale. To get the correct equation linear equations do give more accurate information on the
over this longer time scale, it is necessary to rekit) and  renormalization aspect of the dynamics that are not present
H'9 in Eq. (187 to obtain instead of Ec(191) in the linearized equations.
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Note that Eq(191) on the shorter scale evolution is once expansion procedure, we tread again in areas of uncertain
again the same form as the original EG3—(8), except that mathematical validity: We are unaware of any rigorous
the effective surface energy is increased fiiio Be 2. For  theory for global inner/outer matching for nonlinear time
B<1 ande<B? the surface-energy term is formally small evolving partial differential equations in a complex domain.
and therefore the limiting dynamics @-0 is relevant at (This issue is currently under rigorous mathematical investi-
both O(1) andO(e) scales. The boundary conditions<at gation; sed23].)
are different in the/ and x variable, however; in one case,  Therefore, the matching principle we invoke, discussed in
we match to a parabola at infinity and in the other case, th@etail in Appendix A, rests on other grounds. It is similar to
far-field state is a straight line. However, as suggested by thgyat utilized in the Hele-Shaw contej@], where it proved
computation in paper Ill, the initial-/far-field matching con- satisfactory. What is more, it has been confirmed analytically
ditions have no effect on the long-time asymptotic staté—gor the linearized problerfil]. Further, interfacial evolution
steady tip emerging in a direction of minimal surface energypredictions based on the analytic theory for the Hele-Shaw
(in the presence of anisotropgnd a continually ballooning - fiow [2] have thus far been consistent with numerical calcu-
tip without surface-energy anisotropy. _ lations[11], lending additional support to the basic premises

With this property, taken as an assumption for the pur-f this principle.
poses of the present paper, it foIIo_ws from the renormaliza- | the case of the analysis of an initial zero, there are
tion property shown in this section that at smaller andfyrther uncertainties about the nature of the inner-equation
smaller scales—all the way up to a cutoff scaledff5"%),  dynamics, since there are time scales when that dynamics is
the dynamics is expected to be self-affine in the presence qfescribed by a complex nonlinear partial differential equa-
surface-energy anisotropy, at least within the class of distufjon whose solutions are unknown. In those cases, we have
bances considered in this section. proceeded with further assumptions, as seen in Sec. V and
Appendix B, about the nature of these solutions. We believe
the basic premises to be correct since the scalings they imply
about interfacial deformations are consistent with earlier nu-

In this second part of a three part sequence of papers, waerical calculation§11] for the isotropic case and those pre-
have incorporated small but nonzero surface-energy effectsented in paper Il of this paper sequence for strong isotropy.
with generally nonzero anisotropy, into the dynamics of Despite the qualifiers, the limitations on the nature of ini-
z(Z,1) in Im <0, in the small Peclet numbéP) limit. The tial singularities, and the drawback of having to carry out an
analysis throughout required allowed times to be long inelaborate investigation in the lower-half complex plane, we
terms of some inverse power 8 but limited in the(smal) have reported here what we believe to be the first analytical
Peclet number by<P 1. This investigation has so far been investigation of the fully nonlinear dendrite dynamics in the
possible for initial conditions that contain only singularities limit of vanishingly small surface energy. As a by-product,
in the lower-half{ plane of the type given in Eq28). we have obtained qualitative and quantitative information on

We are hampered here by a lack of rigorous mathematicdhe interfacial evolution, which we list below, answering, at
support. There are no theorems known to us that guarantdeast, some of the queries of Sec. I.
existence of solutions for all time for nonzero surface energy. (i) Starting with some analytic interfacial shape, within
Further, there is no guarantee that if the initial interface ishe class for which the analytic continuation z{f¢ +i0,0)
analytic, it will remain so even for a short time. Indeed, ininto the lower-half complex plane contains singularities only
Sec. Il A1, we report that, with the approach of a not-too-of the type given by Eq(28), then all singularities continu-
weak singularity withB>3, the interface evolves over a ally approach the real ax[4], even as small surface energy
long time. Over this long time scale, the inner equation for aalters and modifies their structures. This latter result follows
disturbance on the interface is precisely what one would obfrom our findings in Sec. l{and Appendix A that the zero-
tain for a Hele-Shaw interfacial disturbance with no forcing.surface-energy singularities are in fact centers of inner re-
In this latter case, there is numerical evideht8] suggest- gions where surface energy is important. Though surface en-
ing pinch-off, provided the initial interface is sufficiently dis- ergy is expected to prevent singularities from actually
torted. Thus, we do not expect global existence of solutiongmpinging on the real axis on the time scale of the dendrite
for a general initial condition. Nonetheless, since the timeip advance, the continual approach towards the real axis of
scale of the process described is long compared to that for timany singularities causes interfacial distortion over small
advance, one can examine the interface before such an evestales. The nature of an indentation depends on several pa-
tuality is realized. Here, we proceed with the assumption thatameters: the values @ andE(0), theinitial distance from
z(¢Z,t) indeed remains analytic and univalent in {g,0, at  the real axis, and values of the surface-energy paranteter
least on the time scale of interest. Further, given that zeroand anisotropy indexx. The dependencies are detailed in
surface-energy dynamics is expected to be well-posed if®ec. Ill.

Im <0, given similar results for Hele-Shaw floW}&,10], (i) It is well known from complex variable theory that
we have proceeded with a formal procedure of inner anémall changes in the initial shapgé+i0,0), can have radi-
outer expansions near each point where an assumed “outertal effects on the corresponding singularity distribution in
asymptotic expansion fails. This procedure resembles what(£,0) in Im({)<0. Thus, sensitive dependence of the inter-
has been done for isotropic Hele-Shaw flg®& Anisotropic  facial dynamicgindeed, noise effects, as popularly described
surface energy, when sufficiently strong, significantly altersn the literaturg can all be traced to the effect described in
the inner equations of the singularities, generally requirind1]. For one initial condition, singularities initially far from
multiple inner regions. In carrying out a matched asymptoticthe axis come close to the real axis and cause interfacial

VIl. DISCUSSION
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indentations that are not seen for a slightly different initialfrom a slowly varying background state. The importance to
shape without corresponding complex singularities. Thusthe overall dynamics comes in combination with the tip-
the mechanism amplifies the differences in initial conditions.characteristic-selection results to be reported in Sec. Ill: The
This sensitivity to initial conditions is not unexpected, sincesolution to the standard problem results in a steady dendrite
the zero-surface-energy interfacial evolution problem istip, in the presence of anisotropy only, with the resulting
known to be ill-posed. Therefore, the evolution for smallemergent tip aligned in a direction of minimal surface en-
nonzero surface energy is expected to be characterized ®rgy. The resulting emergent tip satisfies conditions of
large, though bounded, Lyapunov exponents. steady-state microscopic solvability theory, even as the far
(iii ) Prior investigatior] 1] suggest that among the singu- field is unsteady. Given that a general initial condition will
larities considered here, poles approach the real axis the fasiave many zeros o, in the lower-half plane, daughter sin-
est. For poles, whose strengths are not too weak, the invegylarity effects are likely to be quite common. Each time a
tigation in Sec. Ill shows that surface-energy effects act on aughter singularity impacts the real axis, local tip structures
slow time scale only. Until the time when surface energyresyt along directions of minimal surface energy. Thus, for a
does become important, interfacial features are thereforg) o1q anisotropic dendrite developing side-branching,

d_ominated by approaching poles, i.e.,_ parall_el-sided ind_emEach side branch results in a secondary tip aligned at right
tions. To the extent that any two—d|m.enS|or_1aI, O”G'S"?'e ngles to the original tip. Renormalization characteristics
model can be relevant to actual three-dimensional dendrite en suggest that this process continues, with side branches

this picture Is in qualltatlye congruence_wnh experlmentalof side branches forming tertiary tips, etc., in preferred di-
observationgsee[20], for instancg. Experiments also sug- . . T .
Jections. Given a distribution of poles close to the real axis,

gest a predominance of indentations initially aligned at 60 X . o . )
with the tip-advance direction. We are unable to explain thigausing deep interfacial indentations, one might expect that

feature so far, but expect that it has to do with properties the impacts of daughter singularities associated with zeros

the solutions of the strongly anisotropic inner equationsVill result in secondary dendrites. What remains to be re-

which are yet to be fully understood. s_olv_ed is the frequepcy with _Which these_daughter singL_JIari-
(iv) For a particular pole whose resid(strength has real ~ ties impacts cause tip selection. If these impacts occur inter-
and imaginary parts of the same order, as is necessary fapittently, one can expect emergent tips between some
side-branching rather than tip-splitting, we find that there is &n€ighboring indentations and not others. This dynamical fea-
range of distancgy| from the tip, over which the indentation ture can manifest itself as an additional mechanism for coars-
depth scales ag|y| and the width is constant, as discussedening, since the selected near-parabolic tips advance in a
in Sec. Ill. The level of anisotropy does not affect this result.direction of minimal surface energy more rapidly than those
(v) For an ensemble of poles that would account for sidenot selected.
branching(seg[ 1)), it is shown in Sec. Ill C that the selective ~ Our investigation of the small undercooling, small-
effects of surface energy on poles of differing strengthssurface-energy effects on a dendrite began by taking the limit
(|Eo|) cause dendritic indentation widths to coarsen/@ , of P—0 and then studying surface-energy effects/fet1.
over an intermediate range of distances from the tip. OuSuch a procedure requires some relative ordering, With
coarsening scaling differs from the theoretical equilibriummuch smaller than some positive power 8f The precise
results of Voorhees and Glicksmd@2], who obtained a restriction is harder to determine for complex plane dynam-
|ly|*”® scaling using a mean-field approach. Since our resultgs because one must study the dynamics in an analytically
hold solely in an intermediate range over which surface enggntinued domain. We have yet to make a precise determi-
ergy has not completely dissipated the pole features, there jsation of such a parametric restriction.
not necessarily a contradiction. Interestingly, the experimen- Fyrther, we have not considered the case of singularities
tal results referred to ifi22] give support to any exponent that are initially far from the real axis but have large
betw_een% gnd 3 . ~_ strengthglarge residues for the case of pgleBhese issues,
(vi) While the zero-surface-energy dynamics predicts in-3jong with the dynamics for other forms of singularities not
terfacial cusp formation for dendrites for some class of initialconsidered here, will be studied in the future in order to
conditions, our investigation reported in Sec. V(Bnd in clarify if the overall interfacial dynamics are indeed domi-

detail in Appendix G suggests that any nonzero surface eNmated by the class of initial conditions, considered here, as
ergy creates new singular structures centered around \ge suspect them to be.

“daughter singularity” that prevent the interfacial cusp for-

mation. Instead, the daughter singularity impact marks the
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APPENDIX A:  INNER EQUATIONS FOR Consider a neighborhood gf(t) = s+ B¢, where the
SINGULARITIES NOT CLOSE TO THE REAL AXIS outer-asymptotic behavior is given by E§6) for 3>0. We

We investigate here the inner equations that appropriatelgefme inner variableg, 7, andG as

account for surface energy effects in a local neighborhood of

a singularity of the outer-asymptotic expansion located at 1

={s. We do so by scaling both dependent and independent {— L) =B° —— x({,1), (A3)
variables in a local neighborhood &§(t) with suitable pow- Co(t)

ers of 5 and then taking the limi3— 0. In this section, we
restrict attention to the case whdten ZJ>B°, where>0
depends omr andEy(0) and will be determined in each case
as below. We allow for the possibility thattr<1 and
|Eo(t)|<1. Thus, one has to consider different possible rela-
tive orderings ofa, |Eq(t)|, and B. We will assume, for 2(¢ t)~Jtdt’q ()1
simplicity of algebraic manipulations, that ’ o aestl

C.(t)=B"7(1), (A4)

a=ab", (A1) + BT A=PIE(0)G(x(L1),7(1).  (AB)

Eo(0)=Eo(0)B*, (A2)

The appropriate choice of constanigs and the functions
so that assumptions on ordering are reflef:ted through théo(t) andC,(t) will be determined shortly. The choice 6f
exponentsh,u=0. Note that each ofr and E4(0) in the  and in each of the subsections is to be understood in the
above are stricthO(1) [in the sense that it is nat(1)], as  context of that subcase only. When E{&3)—(A5) are sub-
B—0. It is not necessary to assume a power-law dependendituted into Eq(21), then after collecting all possible domi-
as in Egs(Al) and(A2); all the results quoted here hold if nant order contributions, we obtain the following inner equa-
O(B") and O(B*) are understood a®(«a) and O(Ey(0)),  tion, provided there are no zero-surface-energy singularities
respectively. within B? of the real axis:

Co(t) | G ds(t) X B

B YC,(t)G,+

—a1,(L(D).) | XG,

Co(t) Co(t)En(0)
3/2, 2
— gL~ (32u-[3(2-B)i2)s Co V) (—2‘9_ (Gl’z))
S — X
ESA 024t | X

A i40gTI20 5\ 112 2
— BLHAH (U2 (B+6125 ae”"Cy (1) Eg(0) (E J (Gslz))
2iz[(L4(1).1) X

3 dx?
ae" "2/ (¢(1).1) ( 2
2iCAt)ENA0) 5 dx>

— BLHA-(T12u+(TB-6125

(G ;5’2)) . (A6)

To simplify Eq. (A6), it is convenient to define from the corresponding zero-surface-energy solution by the
prior impact of other singularitie§ncluding daughter singu-
. larities, studied latgr
_ , N In order to match to the leading-order outer-asymptotic
Colt) exp( fodt Gz, (4s(t).1 )>' (A7) behavior in Eq(36), z,~Eq(t)[{— {s(t)177, it is necessary
that asy— o (for arg y restricted to an appropriate interyal

It is to be noted that in the event that the leading-order G,(x,~x"~. (A8)
asymptotic solution on the real axige., the interface dy- _ o

namics is still given by the solution of the associated zero- 1€ initial condition is

surface-energy prob-lem, it is appropriate to. replqgeqlg, GX(X'O)ZX_'B- (A9)
d2, andZ, occurring in Eqs(A5)—(A7) by their correspond-

ing zero-surface-energy solution values. However, by keepNote that in order for Eqs(A8) and (A9) to be valid, we
ing them more general, we account for situations in whichmust require that> u/B since the outer-asymptotic behav-
the actual solution on the real axis has veered dramaticallior z,~E({— ¢s) ~# is valid only for|{— ¢o|<|Eq| Y. If &
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=ulB, the matching and initial condition must reflect outer Notice, before proceeding, that large values\aind u cor-
behavior(29). So Eq.(A8) has to be replaced by respond toweak anisotropy and weak singularities, respec-
tively.
Ao(t) _
G,~———+x # for y—oo, (A10)
X EO(O)CO(I) X X 1. The case ofiy.<0

. For this case, if3<2, then inspection of the above equa-

while tions indicates that anisotropy effects are strongBif 2,
then the anisotropy is weak. It is to be noted that in either

Ao(0) case, <0 necessarily implies that<8/3(1+\), i.e., the

E4(0) singularity strength is not “too weak.” This condition will

be used later.
It is a priori unclear what sectors in the complgxplane

G,(x,0)= +x B (A11)

We note that if we seek consistency in a dominant balance

one should invoke the matching conditio#8) or (A10). In procedure between the first term on the left of E&6) and

general, as shall be seen later, it is an overspecification tii€ firt two terms on the right of EGAG), one is led to the

require that the matching condition be applied for all valuescondition #=4¢,<0, corresponding to a long time scale,
of arg y. sinceB¥> 1. This finding is inconsistent with the observation

In [2], while considering the isotropic Hele-Shaw prob- that condition(iii) in Sec. IV holds f_or anyt>0 anql there_-
lem, it was suggested that the matching be guided by wwdore the out(_er pertL_erat|on expansion becomes inconsistent
principles. for anyt>0 in a neighborhood of = §s._Thus, we seek an

(a) The sector where EGAS8) is demanded in the far-field altérnate dominant balance by choosittg-0, so that the
gives rise to a unique solution to the inner problem. inner time scaler=0(1). Then, fort=0(1) we choose

(b) The range of argy where matching is invoked trans- 2(1+N)+
lates in the! variable to directions towards the physically =— - -
relevant regior(real axis in our current formulation B+6

The first principle(a) would be justified if one were to
assume that the original initial value problem in the real axi
has a unique analytic solutiof@t least up to some positive
time) since its analytic continuation up to an inner neighbor-
hood of /= ¢ will also be unique. The second principlie)
was invoked in analogy to the steady-state dendrite or Hele- 4Gy ~TI2 1 112
Shaw problem. For the time-evolving problem, there is no c (t)zftdt’ ae "0Cy(t")E5(0)
known equivalent to global Stokes lines to check whether . 0 2757L(t) )
invoking principle (b) for each singularity would be tanta-
mount to requiring that the outer zero-surface-energy soluin which case one has the following leading-order parameter-
tion be valid on a part of the complex plane adjacent to thdree inner equation:
real axis. However, when we applig¢t) to the linearized
complex dynamics irf1], the results were consistent with 2
what was obtained directly from the real domain equations G,=- 3 9x? (G- (A16)
through Fourier transforms. Also, many of the consequences
of the complex dynamics of singularities obtained by apply-The isotropic surface energy terrﬁ‘a;”2 term) in Eq. (A16)
ing th_e principles_ above hav_e been found to be c_onsiste_ng found to beO(B~*£%%) and the anisotropic term con-
with direct numerical calculations of the associated isotropigajning G ;52 is O(B#3)8(1+\ =41y poth o(1), andhence
Hele-Shaw flow{12] in the real domain, for a sequence of neglected in the leading-order equatigkLe).

problems with ever-decreasing surface energy. Thus, there is The strongly anisotropic equatic16) has a similarity
some indirect evidence that invoking tad hocprinciple (i)  gg|ution of the form
is appropriate for the nonlinear dynamical problem as well.
We illustrate sectorial matching in Fig. 4. G,= 7 2BIB+6g=2mi(BIB+O)E2( )

In order to find a leading-order inner equation, it is nec-
essary to determine which of the terms in E46) contain- _ Y
ing powers of B are dominant. That determination clearly p=g 2m(1p+6) el (A17)
depends on the values of ordering parametend u, as
well as the choice off. To distinguish the different possible
cases, it is convenient to define

(A14)

a choice consistent with conditidiii) in Sec. Il. Note that
6> ul B is required for the validity of EQSA8) and (A9).
The resulting leading-order inner equation is simplified if we
further choose

(A15)

whereF(v) satisfies

B 2v
4(B—3 2 m ren 13 2 r—
CE_(B ”), (AL2) FPF"+6FF/F"+2F *+ 2og Fit g FF'=0,
3(2-8) (A18)

= M (A=\g)= i (2= BIN—4(B—3w)]. with asymptotic condition

(A13) F~p AR (A19)
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asv—o in some as-yet undetermined sectors, corresponding By insisting that the leading-order asymptotics for large
to the given initial and far-field matching conditi@A8). In  on the positive reab axis be given by Eq(A19), we have
applying matching principle(b), discussed above, to the actually ensured the following three conditions.

similarity solution, to determine the ranges of argver (a) The leading-order asymptotic behavior is given by Eq.
which one should seek the asymptotic behavist9), the  (A19), rather than a more generar#2 for which ay+1
following problem arises: arg is related to arge and ari)f ~ [such behavior is still consistent with EGA18)].

— ()] (which defines which directions are towards the real (b) No exponential correction of the form

£ axis) in a complicated manner, through a sequence of trans- _ 312y 32+ g1

formations [see Egs.(A3), (A4), and (A17)]. Therefore, e 123+ A7 A1 o()] (A25)
matching requires knowledge of the specific outer solution, _ .
However, we note that replacing by veim and F by IS present in the largp/ asymptotics for a_rg»=Q, as other-

Fe i#mf2 \where ¢,=4mm/(B+6) for any integerm,  Wise Eg.(AlQ) could not possibly be vahq. Since a Stokes
leaves both EqgA18) and(A19) invariant. The implication Multiplier can only change across an anti-Stokes line where
is, then, that if one were to find a unique solutiefw) to Eq. e ratio between two exponential terms is a maximum, it
(A18) satisfying Eq. (A19) for argw in [—4ml follows that this condition will rule out an exponential of

(B+6),4w/(B+6)], as will be shortly determined, there the form (A25) for large |1/ and argy in the interval
will also be a unique solution to EqA18) satisfying Eq.  L0:27/(B+6)). It also ensures that the formal seri@el9)
(A19) for argy in [y —A4ml(B+6),by+aml(B+6)], 'S valid in this range of arg for large |v].

which can be generated from the one corresponding to (€) NO exponential correction of the form
m=0. One of these intervals in atgwill be appropriate in ol[203+ 1232032 B4 1 o(1)]

invoking principle(b), i.e., would correspond to directions in
the ¢ plane towards the real axis. Thus, it is enough to dis

(A26)

is present for arg=0. Once again, since the Stokes multi-

cu?:/ the soldu_tlon font;|=0. . \uti 18 plier can change across an anti-Stokes line only, it follows
e now discuss how a unique solution to B418) can 4+ s condition will rule out an exponential of the form

be expected when E@A18) is certain on only the positive (A25) for large|s| when arg is in (— 27/(8+6),0], which

rea_l v axis. We will demonstrate_ why Equg) Is in fact ensures that the formal serigs20) is valid for this range of
satisfied for large|y| for argv in the interval [ -4/ argv for large|

(B+6),4m/(5+6)]. Using a dominant balance technique, From (b) and (c) above, it follows that the requirement

one can extract from Eq60) the higher-order asymptotic (A19) for |arge positiver ensures that this asymptotic series
corrections to Eq(A19), is actually valid for large|v] when argv in [—2n/
(B+6),27/(B+6)]. In reality, this is valid for the entire
interval [ —4/(B+6),47/(B+6)], because the exponen-
(A20)  tial term “born” at either of the anti-Stokes lines
argv=27/(B+6),—27/(B+6) is subdominant compared to
terms of the asymptotic serig&19) until one moves out-
B wards to the nearest Stokes lines.
a;=— = (2+3B)(4+3p), (A21) Conditions(a)—(c) select a unique solution to the third-
8 order differential equatiofA18), which we implemented nu-
merically by integrating Eq(A18) along the positive reab
axis towards the origin, starting at=L for some suitably
(2+3p)(4+3p)(480+ 7745+ 3666°+556°), largeL and using Eq(A20) to determine the initial condition
(A22) F(L), F'(L), andF"(L). Possible spurious solutions are
avoided by ensuring that the computedt some fixed point
B on the real axis does not chan@e within numerical inte-
3= ~ 38, (21 B)(4+ ) (2+3B)(4+3p) gration accuracy of 10'% whenL is continually increased.
An L of 20 seemed to accomplish that. We also found that
X (20 160+ 38 52Q8+ 27 34QB°+ 85263°+ 9553%). the asymptotic serie$A19) quite accurately describes the
(A23) computed solution when is sufficiently large(more than 10
or s9. Indeed, integration fromv=L to any point closer to
tpe origin, whose argument lies ih—4x/(B+6),4m/
%,8+ 6)], suggested that E§A19) remains valid in this ex-
tended sector. One must be vigilant in controlling growth of
round-off error, generated by exponentials of the foAR4),
when integration is done outwards from the origin.
Notice that Eq(A18) admits one or more isolated singu-
ties vy, for F in the form

F~v P1+a,v 3 Plra,p 0 Pragy 9 3F2¢...]

where

B

427128

One obtains exponential corrections to the algebraic behavi
in Eq. (A20), through either a Borel resummation of the
divergent serie$A20) involving powers ofy 372 as de-
tailed in [2] for a similar problem, or by linearizing Eq.
(A18) about the leading-order asymptotic behavié19)
and examining WKB solutions of the associated Iinearizeﬂ .
homogeneous equation, as first suggested by Kruskal a g
S_egur[24] for some nonllnea}r third-order differential equa- F~A (v— v, ) Y143, (v—v;)5B3+-+],  (A27)
tion. The exponential corrections are found to be of the form
where there is one relation between @dandA;,, found
e=il2/3+ 5123432 B 1+ o(1)), (A24)  from substitution of Eq(A27) into Eq.(A18), and matching
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appropriate powers of— v;,. However,a, andA;, cannot

be determined fully through a local expansion. What is more, {—Gn()=8° Co(D) x(&1), (A33)

Eq. (A18) alsoallows local solutions for whicl has double

zeros, C,(t)=B"%(1), (A34)
F~bo(v—1g)2. (A28)

t
z({,t)~ | dt’ t"),t’
By straightforward adaptation of the numerical procedure (&0 f 0 q20(55( )t

detailed in[2] for another differential equation with some-

what different kinds of isolated singularities, we determined + B (B2 EROE (0)G(}(£,1), (1)),
from integrating Eq(A18) that the three pairs of one-third (A35)
singularities ofF whose values of;, are closest to the origin
are where
0.001 073 #5.470 147 6, 5=3{2[(B+213)5— u]—A}> 46, (A36)
—0.777 996 97 8.184 871 44 (A29) . 3[(B+2/3)6—u]—3/2
=3 5 —\|>0. (A37)

—1.358 520 8#10.326 151 &

. o ) The “inner-inner” equation is then
Applying arguments similar to those presented2h which

have been subsequently confirmed rigorously by other meth- R CS/Z(t) 2 »
ods[25], for the isotropic Hele-Shaw problem a denumerableC,(t)G;=— —272 (G; )
infinite set of singularities that asymptotically approaches the B30 Z32(Ls(1), 1) ax
anti-Stokes linegfrom the outsidg arg v=*4x/8+6 can be
expected. ae MCIAEYA0) (2 # L4,
In our computation, we encountered no zero$ ¢fecall - 2i'27’2(§ (1) 5 F (G;( )
Eq. (A28)] within a 16X 16 square centered at the origin. 0R5si X
This was deduced by noting that when the differential equa- ae003Y2(£ (1) 1) 2 52
tion (A18), integrated on a once-traversed closed con@ur — B2\ 0g >t 2 ( - (;f5’2) i
resulted inF returning to its original valuéto within numeri- 2iCt)ElA0) 59x° *
cal errop, $-dv(F'/F) was also zerdto within numerical (A38)
erron. We therefore concluded thgtdid not have any zeros
and the only singularity was of the type H&27). _ Note that the last term is retained only for tB¢1) anisot-
Th_e existence of singularitig®\27) in the similarity vari- ropy case, whera=0: otherwise, it is neglected at this or-
able implies that der. While we do not know much about the solution to Eq.

(A38), we note that, sincé’;> 0, one might expect that the

solution to Eq(A38) equilibrates over a short time scale to a

X CRO[ - Lin(1)]22 (A30) State driven by the inner solution, that is, to the solution to
the equation for the outer of the two inner regions. The far-

in the neighborhood of the singularity, defined by the restricfield boundary condition o3 must be
tion

z,~ B,r(ﬁ+2/3)5EO(O)A%T—(B+2/3)(2/3+6)

é;pAﬁ]T*Z(B* 2/3)/(3+e)5(2/3, (A39)

|{= (DI <BCq () vin7?# 79, (A3L) _ _ _ _

in order to be consistent with E§A30). Since the inner-
where inner region is centered around inner singularities, that are
outside the sector of inner-outer matching, we expect this
B Vin s oges region to play a passive role.

Gin(H)=4s(H)+ Co(D) Bo?ETe, (A32) In Fig. 5, we sketch the various outer, inner, and inner-

inner regions in this case.

Inner-inner region for strong anisotropy

2. The case ofys;=0

We note that the locally singular behavigh30) is not . , . . )
consistent with approximating EGA6) by Eq. (A16). In all It is convenient to subdivide this case further into three
that follows, the phrase “inner-inner” refers to small, finite- €aS€S: u=B/3 with 0<B<2, u=p/3 with f>2, and
surface-energy zones about singular points that arise in re=8/3. The borderline casg=2 will not be discussed here,
gions that are already “inner” solutions for the zero-surface-SiNCe it requires a significantly different analysis.
energy outer singularities. The approximation breaks down
locally near eachy={;(t), because the first term on the a. Subcaseu=pI3, 0<f<2
right side of Eq.(A6) is not small. It is appropriate to define  There is an initial stage, marked by a fa3¢3%) time
inner-inner variables by scale—faster than the time scale over the zero-surface-
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energy solution evolves, where there is a dominant balance However, for A\>0 and =1 it is natural to assume
between the left-hand side of E@#\6) and the first two terms (based on the assumed continuity of dynamics on the anisot-
on the right of Eq.(A6). In this case, for studying the fast ropy parametet) that the appropriate solution is dictated by
time scale dynamics, it is appropriate to choose the followinga balance between the left of Efi41) and the second term

scales in Eq(A6): on the right—this is essentially the Harry-Dym equation,
which is the inner equation in the absence of anisoti@y
N+2u To explore this matter further, we introduce new temporal
Y=de, 6=— B (A40)  and spatial scales.

Dissipation of weak singularities foa>0. We now
and takeC,(t) in accordance with EqA15). The resulting _choose inner time and space scales in @), correspond-

leading-order inner equation is given by ing to
52 (£(0) O\l y=3ulB=1, o=pIp (A42)
G =— 2(G3/2) + Zog(gs( )1 )e ( 26_1/2)
T 3 - -
X /xx E20)a x o Txx and choose
2\ i806"4 t C3/2(t!)
JEe & e Zog(—éG;S’Z)XX. (A41) Cl(t):f dt’ — ~°3/2 ~ (A43)
CoES(0) 0 IEQ0)Zp/(¢s(t'),t")

Since 3u/B—1<y, for B<2, it is clear that this stage fol-
lows that in Sec. V B 1. Also, notice that this time scale
coincides witht;, described in(ib) in Sec. IV. With the
substitutions(A49) and (A43) back into Eq.(A6), one ob-
tains, in the limitB— 0, the Harry-Dym equation,

The last term in Eq(A41) is neglected unless=0. It is to

be noted thats= u/B, the equality holding only foi =0.
Thus, fora >0, the inner region is small enough in size even
for 7=0(1) so that the appropriate far-field matchiret
least in some compley sectoj and initial conditions are

given by Eqgs.(A8) and (A9), respectively. Foi =0, since e
6=u/B, the matching and initial conditions are instead G,=—2—2(G;1/2). (A44)
given by Eqs(A10) and (A11). ax

For 7<1, it is clear from the initial conditiofA9) that o o
this early time solution must involve a dominant balanceClearly, under this limit and on these scales, the behavior is
between the left-hand side of E@41) and the first term on isotropic. Whenr=0(1), th_efar-fleld matching condition is
the right. The similarity solutioiA17), discussed in detail in  9iven by Eq.(A10), at least in some complex sectors. We are
the context of strong anisotropy, is appropriate in describing'nable to find exact solutions to EGA44) satisfying initial
the evolution at this time stage since on substituting this intg"d Matching condition&10). Nonetheless, EqA44) does
the other terms on the right of EGA16), one obtains small have a similarity solution:
errors forr<<1 (except in a small vicinity of singularities of B o B
F). There is once again an inner-inner region arogipaor- Gy=7 #RZPE"2(y), p=xI727P (A4E)
responding to each singulariwy,, of F; however, we refrain .
from any further discussions of this, since we cannot say'hereF(») satisfies
much about its solution. We will assume, as we have done
befor_e, that the_inner-inne_r solution can be maFched as ap- 1 F-3(BF—2vF')=F", (A46)
propriate to the inner solution behavior near a singularity. It 3(2-p)
is to be noted that the similarity solutigA17) for <1 also
defines a regime?(¥*8)<|y|<1, where Eq(A8) holds in  with the asymptotic far-field condition
some complex sectors. In this regime, the outer solution,
even forh =0, behaves like {— ¢s) "?. Thus, the similarity F(v)~vP?%  v—om, (A47)
solution is valid in this regime even for=0.

The similarity solution discussed in the preceding para-The solution(A45) remains a valid solution in the present
graph is invalid wherr=0(1), since Eq(A41) is obviously ~ case of interest for the restricted regini#/c” V<7<1,
different from Eq.(A16). We are unable to say much about |x|=71**"#1<1 since Eq(A10) reduces to Eq(A8) for
the dynamics at this stage because of the difficulty in solvingL>|x|> 2131,

Eq. (A41). However, forn=0, we note that the effective =~ When 7=0(1), because the boundary layer width
inner region size, deduced from the similarity solution to beB*/#7213=P1 is increased in size t@(B*'#)=0(EZP),
O(572¢78)) is now O(|Eo|*F) and has now completely there is no remnant of the initial singularity behavior left any
engulfed any region over which the outer behavidgr ( more. Thus, forn>0, the weak singularity has completely
— {5~ can be observed. Thus, there is no trace of initialdissipated before timebecomes strictlyO(B3#/#-1)),
singularity left forA =0 at this stage and we can say that the Together with the previous conclusion ar=0, we con-
initial singularity has dissipated over a fast-time scale, everlude that all sufficiently weak initial singularitiesu(
beforet is strictly O(B%); all we are left with are singulari- = g/3) for 0< <2 get dissipated over a fast time scale and
ties of the inner regions. The dynamics o0 for 7>1 are instead replaced by singularities of the inner equation.
will not be discussed any further. Thus, the specific type of singularity we started out with
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cannot impact the features observed at the physical interface The solution to Eq.(A44) that satisfies the asymptotic

later in time. We cease to study such singularities any furmatching condition is given by E§A45), whereF satisfies

ther. Eqgs.(A46) and(A47). We know that the similarity equation
above admits inner singularities of the form

b. Subcaseu=p/3, B>2 23
. . . . F(v)~An(v—vin) " (A50)
In this case, sincg.<3u/B—1, the time stage given by

Eq.(A42) is the first relevant time scale in the dynamics. The 3v;,
same scale_s{A42_) and (A43) a_nd the _re_s_ultlng equathn A‘”:(m
(A44) are still valid. However, since the initial and matching

conditions are given by Eq#A11) and(A10), the solution in ¢4 yarious values of;,, which have been determined nu-
general forr=0(1) remains unclear. However, fog|<1, merically[2]. In outer variables, the solution in the vicinity

1/3
, (A51)

it is consistent to assume that the solution is given by of one of these inner singularities becomes
G.~ P2BIB3(B-2)]p -2 2M3(5-2)]y A48 2
T (xr ) (A49) 2~ Br (B35 BolO) _(s-armizraz-p)
where F(v) satisfies Eq.(A46) as before, except that the in
matching condition(A47) is invoked now forv—0 rather X Cq PBt)[ - ()] 43 (A52)

than. Itis clear that ag— o, the region in whichG, has

the singular behavio®,— x~# shrinks. Thus, over the fast (Notice that if 3=%, the inner singular solution with surface
time scaleO(BY), as identified in Eq(A42), any trace of the energy effects is the same as the outer, zero-surface-energy
initial singularity is wiped out by surface energy effects. Wesolution) The particular inner singularity a;, is then lo-

cease to discuss this case any further. cated at
. Sub /3 Vi
¢ Subcasqu<p LoD = L)+ s BO2A2F (AB3)
From the expressions fap., it follows that in this case Co(t)

B<2 necessarily. Thus, in this subcasez\.>0, 0<p
<2, which means that the anisotropy is weak but the singu
larity strength is not too weak.

The vicinity of {=¢;, (corresponding tdv— v;,|<1), where
Eq. (A52) is valid, is given by the restriction

As before fory.>0, there is an initial stage of evolution |£= Lin(D)|<B2|Co X(t) vy 722 P)|. (A54)
where the inner equation is given by E@\6) with the
choice of time and space scale corresponding to(E40), Inner-inner equation for #+0(1).
leading to Eq.(A41), except that theD(B?) term is now It is clear from substituting Eq(A52) into the original

necessarily negligible. For<1, once again there is a simi- equation(A6) that the approximation leading to E@\44) is
larity solution as described in the preceding subsection, witlinvalid in an immediate neighborhood of each singulatity
inner-inner regions around each singularity. Once againfor =¢;,.

strictly O(1), notmuch can be said because of the difficulty =~ We introduce inner-inner variables in the form

of solving Eq.(A41).

While the time evolution of Eq(A41) for 7=0(1) re-
mains an open problem at this stage, we note that¥et, a
consistent solution can be found by neglecting anisotropic i
terms in Eq.(A41) for which the similarity solutior{fA46) to C,(t)=BY%(1), (A56)
the Harry-Dym equation is obtained. However, since this
solution continues to be valid until timds strictly O(1), it t
is sensible to study this in the context of the equations valid ~ Z({:t)~ fodt’q%((s(t').t’)
for t=0(1) by looking at the special case1, as we shall

~ 1
é—Zm(t)=35m5((§,t), (A55)

do now. —(B—4/3)5— (L3 5F Ao -
+ B+ Eo(0)G 1), 7(1)).
The stage £+0O(1). In this case, it is necessary to go o(O)GK (£, 7(1)
back to Eq.(A6) and choose (A57)
The choice of inner-inner scales
=0 o= ﬂ (A49)
=0 3(2-p8)° 5=3N+2[u—(B—4/3)5]}> 6, (A58)

It is to be noted that since<3/3, 6> u/$=0, a condition d=3(\N—2{4/3-3[u—(B—413)5]H=2(A—\o)>0,
consistent with the initial and matching conditio@#9) and (A59)
(A8). With these specifications for EGA49), andC, chosen _ _ _
in accordance with Eq(A43), the resulting leading-order produces the same form of an inner-inner equation as Eq.
equation, derived from EqAB), is again the Harry-Dym (A38). However, the far-field matching condition in this case
equation (A44). The neglected anisotropic terms are must correspond to

O(BM ) and O(BM 1), each of which is small in this ) o o

subcasédrecall also that now we are left witlt,>0). Gy~ A 27 2B 4RI RI5 a8 (A60)
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to reflect the inner-equation singular behavi@52), at APPENDIX B: INNER EQUATIONS AROUND ZERO
least in some sector of the complex plane. As men- AND DAUGHTER SINGULARITIES
tioned earlier in the context of strong anisotropy, we are FAR FROM REAL AXIS

unable at this point to shed much light on the dynamics of I e .
the inner-inner region, though we believe appropriate solu-heArSengrgZ%fd?g:ﬁg&gﬁg&eonrggspai;’l’)? dr;?\elg irrlwoiﬁg ?Eﬁt
tions exist that match the inner equation. The structure o* 9 P

. : . - : ediate vicinity of a zero ofy,. In the analysis of this
the various outer, inner, and inner-inner scales and solutlon@ y 0f y

for the weakly anisotropic singularity investigated abovefﬁé’;'g”bﬁve \rla?g:;%t_hgtf(t)r;e)\iegoa?]zf;rtuh;rtfrzorriih;\a rfeoarl axis
is the same as in Fig. 5, but with the following scale¢a) (B°), N w7 q oz )

. Lo . B . . A<3. This restriction allows, as in the singularity analysis in
°“‘?r Smgglﬁg'%z _ EO(t)[g. gS(t).] ' (t.)) size of inner Sec. IV, asymptotic approximations tp ,Z, using the lead-
region O(8 >+"*%), (c) inner singularity(there are ac- ing terms of its Taylor expansion §t=¢ ('f) In the neigh-
tually a countably infinite number of inner singularities 9 y P ; O\ 9
2~C(O)[ L~ £ %2 (d) size of inner-inner region borhood of a zero, we define the inner variables as

0(83/8{)\ +2[u— (374/3)5]}) )

In summary, if initial singularities are sufficiently far (—()=5° 1 x(Z,H) (B1)
from the real axis and are also sufficiently weak= 8/3), Co(t) #2777
then all traces of those singularities disappear on a fast time
scale, and therefore one need not consider the effect of such () =B %Cy(1), (B2)

singularities approaching the real axis later in time. For sin-
gularities that are stronger, the zero-surface-energy singular-

ity is preserved as an “outer singularity,” in the sense that 2(£,1)~B*Co() G(x(£,1),7(1))
there is a subregion fdB?<|{— Z4(t)|<1 for some positive ¢
v, where the zero-surface-energy singular behavior/ at + fodt’qzo(go(t’),t’)+ z2(£0(0),00, (B3)

= {4(t) remains valid. This “outer singularity” is in fact the

center of an inner region where surface energy effects are

significant. The precise nature of the inner equations, howwhere Cy(t), C4(t), andC,(t) will be determined to sim-
ever, depends on the relative orderings of anisotropy, singwlify the resulting inner equation.

larity strength, and surface energy parameferindeed, it With the B¢ scaling factor in front of3 in Eq. (B3), it is
appears there are multiple inner regions in general. Howevesgen that a requiremef, ~ consty for an appropriate con-
when the “outer singularity” comes very close to the real stant allows matching to the leading-order outer solution that
axis, as it must eventually, the inner limits discussed in thidocally behaves as E¢125), and determines the scale factor
section are invalid, and we must investigate again the inneB?? in Eq. (B3).

space and time scales, as we will in the following section. Substituting Eqs(B1)—(B3) into the full equation(21)
Note that this paragraph answers those questions raised asd collecting the dominant terms 8, we find an inner

issue(i) in Sec. I. equation of the form
. dz,(o(1),1) 02,,(Lo(1),1) B~ (753 t) &2
5=y~ — _ b 0¢ 0 5 Y A1
OB G = 0.0 8 Cyncn X +i28’§<§o(t>,t)c§’2<t>( 25 (6,3

_ Bt -(1125

&ei‘“’dzé’f(go(t),t)( 2 &

. =5/2\ | _ R1+\—(3/248
2CTANC |5 O |5

~ —id6 1/2~7/2 2
ae” '*%C5Cy (E d (G3/2))
o= oy |22 :
2Z5ALo(1),1) |3 ax? X

(B4)

The choice ofé and §; depends on the relative size of an- a. Short-time development
isotropy and the stage of evolution. There are two cases de- a; the earliest stage, an appropriate choice of time and
pending on whethen=7 (weak anisotropy or 0SA<?%  gpace scale is
(strong anisotropy
(9N—4) A
= 5= 5 (B5)
1. Weakly anisotropic case: }\2‘7‘
Note that if \=%, the choice ofé and &, is the same as

There appear to be many differing stages of evolution ofgiven in the next subsection. Thus, the discussions in the
the zero/daughter singularity pair, so for purposes of claritynext subsection would suffice to describe the earliest stage
it is worthwhile separating these stages into the differingwhen\ =2. In the rest of this subsection, we limit ourselves

subsections below. toA>32.
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With the choice of§; and &, as above, Eq(B4), to the
leading order, reduces to

kiG,=ko(—2G 3, +ks(—2G*3),,,  (B6)
where
k;=C4(0), (B7)
c¥0)
2~ Z3%0,(0),0CTH0) (®8
e "1Z5(£0(0),0) 9)

3 4|C1/2(0)C7/2(0) "

With appropriate choices @@(0), C,(0), andC,(0), there
is no loss of generality in settiflg,, k,, andk; in Eq. (B6)
to 1 and at the same time demand

G,~ X (B10)
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for argv in (—47/9,47/9). Such solutions have been calcu-
lated for the isotropic Hele-Shaw problef2], and are
known to contain a string of-power singularities of that
asymptotically approach the Stokes line arg+4/9, from

the outside of the sectdr-4#/9,4w/9). Around each such
singularity, sinceG, is singular witha —3 power, there is
necessarily an inner-inner region, where there is a balance
between G, "%,, and G, >?9,,. occurring in Eq.(B4).
However, this inner-inner region appears to be dynamically
uninteresting with no apparent effect on the outer-inner re-
gion or later on the real axis dynamics and therefore will not
be discussed any further.

b. Intermediate time development

Beyond this initial stage described above, there comes a
next stage that corresponds to a choice

5,=6=2 (B18)

in Eq. (B4). In this case, to put the equations in the simplest
form, it is prudent to choose

for large|y| in some sector of the complex plane, to match to

the outer solution. Further, the appropriate initial condition is

G, (x.0=x. (B11

It is clear that forr<1, the second term on the right of Eq.
(B6) is more important than the first. With this balance, it is

found to be consistent to assume that fe€1,

GX~ 7'2/13F_2( V),

2/ 13

v=xlT (B12

whereF satisfies the ordinary differential equation:

1
—@(FJrva’):(Ff’)’" (B13)
with the asymptotic matching condition
F~v 2 as|y|—-x (B14)

along a ray in a sector angin (—

to that described in Appendix A.

For r=0(1), theasymptotic solutioiB12) becomes in-
valid and there are no similarity solutions to E&6) that
satisfy the asymptotic matching conditioncat It is unclear
what happens at this stage. However, fer1, it is consis-
tent to assume that

G, ~™F23), T=xI" (B15)

whereF satisfies

—sF 3 (F+29F)=F",

LOID—‘

(B16)

which is a similarity solution ofG,=(-2G,"%,,. The

15,751). Such solutions
have been numerically computed, using a procedure similar

[l B
(t) Zogg((o(t ) t! ) O(t )! ( )
Cylt) = Zo(Go(1),1) (820

cat)

Co(t) =[1Z37(Lo(1).1)1¥ 725, (Lo(1) D)A3] (Lo(1).1).
(B21)

The leading-order inner equations forO(B?7), ie., 7
=0(1), becomes

G,=—G,+x—2(G, "9, + B Vky(—5G, %),

(B22)

where

k B ael40023/2(£0(0) 0)C3/2
4 2i257,(¢0(0),00d2,,(£6(0),0)°

(B23)

It is to be noted that the last term on the right of B822) is
only to be included whei =32.

For A=3%, this is the earliest stage of evolution. In that
case, forr<1, the appropriate asymptotic solution is again
given by the similarity solutionB12), though with some-
what differing definitions ofy and 7.

For\>3%, we drop thek, term in Eq.(B22). The resulting
equation has been previously given by Tanvigdrfor zero
evolution for isotropic Hele-Shaw flow. For<1, an
asymptotic similarity solution to EqB22) (without thek,
term) is again given by Eq(B15), though with differing
definitions of y and . Thus, this solution matches to the

condition matching the solution to the far-field, zero-surface-earlier-time structure.

energy solution imposes

-1/2

(B17)

as p—o

F()~

This similarity solution is the same for the singularities
(A18), provided we useg8=—1. We know this equation ad-
mits singularities that in the variabl corresponds to
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Fai27 remains uncertain and needs to be investigated. However, we
{~B" Y Ca()Co A= Lin(D1 ™2 (B24  proceed further with the hypothesis that such is the case, for
n its consequences appear to be consistent with direct numeri-
provided is sufficiently close taiy(t). The location of an ~ Cal solutions of the Hele-Shaw interfafel], though other
inner —# singularity is given by large time dynamics of EqB18) can presumably lead to the
same scales observed in the numerics. It is to be noted that
Vin o7 o9 the similarity solution(B29) has 3-power singularities, im-
Cin(D)=o(t) + Co0) B, (B25  plying thatG, has a—$ singularity. Thus, there must be an
inner-inner region where the anisotropic termf‘((z)“ in Eq.
for various values of;, which were determined numerically (B4), neglected in Eq(B22), enters into the equation.
[2]. The condition

—— o9 c. Daughter singularity inner equations at longer times
€= Ln(O]<BTCo (D win™] (B26) On examining the relation betweé&handz, andy and 7
defines the immediate neighborhood &f where the local 0 £ andt, it is seen that the consequence of the similarity
behavior(B24) is valid. £;,(t) also defines the center of an Solution (B28) with a singularity atv=w;, is thatz, is at
inner-inner region where the anisotropic te@ifz)xx in Eq. IeastO_(l) different from the zero-surface-energy solution in
(B4), neglected in Eq(B22), becomes as important as the the neighborhood of = {4(t) [n?/ge Ehf}g:_fin that corre-
(G "), term. The time evolution in this inner-inner scale sponds tov=vj, is within 2 B 77" neighborhood of
is faster than here and it may be expected that there a steadg(t)] at least when 2-t> 57 ,
state is reached far=0(1). Since the inner-inner equations The differing limits of r—ce, depending on whether

appear to be dynamically unimportant, we do not discuss thig = O(1) or x—7=0(1) signify the separation of the inner
any further. regions around a zer&,(t) and the corresponding daughter
4

For both cases\>% and A=%, the dynamics forr  £a(D) when t>0(5”"). We now discuss the inner region
=0(1) remains uncertain. The solution to this problem@round the daughter singularif(t) for t=0(1), when it
would require one to solve EB22) in the complex plane has completely separated from the inner region araiy(n).
with the given matching conditions at. How this can be However, we still exarrllllgne time scales for which restrictions
done, even numerically, remains an open problem. Im £4<0 and|Im £ >B"" are not violated.

However, forn=% and 7>1, it is consistent to assume N that case, we introduce inner variables
that if y=0(1), then the solution to EqB22) equilibrates

to a steady solution of [—Ly(t)y=BY _C)Et) , (B31)
0
0= _G)(+X_ 2(G;1/2 XX+ B)\74/7k4( _ %G;SIZ -

t t’ ,t’
| | ) | (B27) _ ng({d( ) ,) at' (832

with matching conditionss,— x ate along certain sectors. 0 Ca(t)Co(t")

Interestingly, notice that there is a differing long-time

structure, following a moving disturbance, henge- Z(£,1)=27o(Z4(1),0)+ CoBY3G(x, 1), (B33

=0(1). Inthis case, the time dependence persists, because

the solution cannot be time independent since the appropriatghere
far-field matching condition for>|x—7/>1 must beG,

— 7. In such a case, it is consistent to assume that

t
Co(t)=exr“ dt,qlg(gd(t’)vt,)} (B34)
GX~TF_2(V), where v=(y— 1) 75, (B28) 0

whereF(v) now satisfies and
F3(F—L1uF)=1-2F", B29 Co(t)
(F=svF) (B29 Cz(t)=_4~3( DDA (B35
with Zos Lq(t), Az, La(t),
F(v)—1 asvp—x (B30) Then the leading-order inner equation is given by
when arg is in (—, 7/3). There is a one-parameter family G.—D(7n)x= —(ZG;”Z)XX, (B36)

of such solutions that were found by Tanvgel. It was
surmised that the dynamics for=0(1) selected a unique Where
solution out of this similarity solutions. It is to be noted that

the size of the effective inner region, in terms of theari-

able, implied by Eq(B18) and the similarity variabl€¢B29),

is BZ7 7716 which become®D(5Y%) when r=0(B~%7),

i.e., whent=0(1). This result is consistent with the scaling The anisotropic terms neglected in E§36) are O(«a)<<1.
results in the following section for=0(1). Whether Eq. The matching condition to the outer-zero-surface-energy so-
(B29) is indeed the asymptotic similarity solution for large lution requires

_ Zo(L4(1),1)

D(n)= ColD (B37)
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Zo/(L4(1),1) The dynamics at these early stages is complicated, and we do
T C,Co (B38)  not further address this matter here.

asy— = in a certain sector in the complexplane. Note that b. Daughter singularity inner equations for intermediate time

the most singular terms of the higher-order perturbation term scales:  =0(1)

z, appearing in Eq(135 are not relevant to the leading-  We now seek a consistent inner-equation structure around
order matching since they a@(B" Y2,8Y%<1 when|;  {={q(t) for t=0(1). We findthat multiple inner regions

— Lyl B™, are necessary for consistency with the outer matching condi-

Equation(B36) is equivalent to that derived for daughter tion and the singularity structure the solutions inherit from
singularities in the isotropic Hele-Shaw problghy. (7.4) in  earlier stages.

[2]]. We know little about its solution. We assume that a There is an important restriction on the time stage when
solution exists and satisfies the given matching conditionthe results in this section are valid, namely {0 and that
The scaling information is essential in determining what hap!Im¢y>8%**""°. We introduce

pens when the daughter singularity impacts the real axis, as
shall be seen later. In Fig. 9, we display the various outer, _ s
inner, and inner-inner scales and solutions for the weakly {(—dh=5 Co(t)’ (B43)
anisotropic zero investigated above.

We end thils sectif)n with a note th:_;\t EdqB31)—(B37) 2(£,0)=2o(L4(t) D)+ B2G(x, 7), (B44)
hold even for; <A <37, though the earlier stages are com-
plicated by apparently many different time scales that w
have been unable to fully resolve. The end scaling result of
an O(BY3) inner region around 4(t), wherez, differs from t
the outer solution byD(1) and contains many actual singu- Co(t)zexp{f dt’qlog(gd(t’),t’)}. (B45)
larities of z, (hence called a daughter singularity clugter 0
holds for anyx> 3.

X
t
ere

On substituting Eqs(B43)—(B45) into Eq. (21) and collect-

2. Strongly anisotropic case: A<} ing all possible dominant contributions, we get

As before, there are different time scales in the dynamics, 5 d7 5 X
separately analyzed below. B 7 G 02y, (¢a(1), DB S

a. Short-time dynamics [ (1210, (3125312

The first stage here corresponds to a choice in EB{b— =—p
(B4) of 1Z (La(t),1)
B B &efi400Cg/281+)\+(3/2)527(7/2)6
6=6,=2(1+\)/11, (B39) _ S (éG)s(/z)XX
2|ZO§ (gd(t)lt)

~ 1/2, —
ae UL (£4(1), OB (512)6,+(1/2)6 _—
~ A4y -2/11 - (_gGX )XX'

Colt)=| —57— Zool).1) °

—1/2
(= ZGX ) xx

whereCy(t) is chosen in this case to be

(B46)
X 23 Lo(1), 0T Lo (1), 1). B40
oc¢ oV )qzoll(&)( )Y (B40) The outermost inner scale must involve matching to the

. L . . zero-surface-ener lution, i.e.
The inner equation is the following parameter-free partial ero-surface-energy solution, 1.e.,

differential equation: X
o g2 G(X,T)NBﬁ_ﬁzzog(id(t),t) Gy (B47)
G,+G,=x+ = — (G, *?. (B41)
X 5 dx X . . . .
In order for the matching condition on the leading-order in-
The surface energy terms in E¢B4), neglected in Eq. Ner solutionG(x,7) to be free of5, it is necessary to choose
(B41), areO(B4~"™1Y and (B MY Equation(B41)
has a similarity solution, asymptotically valid fot 6= 8. (B4g)
< B2AFNAL
Recall that the outer asymptotic expansion in a neighborhood
G,= ?YE2(n), v=(x—nIP5 (B42) of {={4(t) behaves as

where F(») satisfies Eq.(B13), with matching condition 2~20(Lq(1), 1)+ 20,({y(t) D[ = Lu(1)]
(B14) for large |v| for argv in (—4m/13,4w/13). Fort 2 B _32 24 14N, 5 5 \—T12
=Q(BZ(3*N) ' this similarity solution becomes invalid 3aBALL= (D] 7aF (OB o) T
since all the terms in EqB41) become equally important. (B49)
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The outermost inner region Bridging the gap between the— ¢4=0(B%"**M) and

We notice from Eq(B49) that the largest spatial scale at O(B7***V) spatial scales is an interme/diate spatial scale
which this perturbation expansion becomes invalid is whervhere there is a balance between t@?f),, anisotropy
{— L4=0(B?(FTMR) syggesting that the largest of the inner term and the (5;1’2)” isotropic surface energy term. This
scale(in case there are nested inner scatEsresponds to  intermediate  spatial scale corresponds  th— 4|
=Q(BOEFNE9) jf N< £ andO(BEZ+3V for =%, The
8= 86=5(1+\). (B50)  time variation in this case occurs over a long time scale, and
therefore for initial zeros a®(1) distance from the real
With this choice ofo and henced,, one obtains from Eq. axis, such effects will not be seen by the time the daughter

(B46) the following leading-order equation: singularity cluster hits the real axis.
The structure of the various inner scales around an initial
X . L
Gi=0, (Z4(1),1) =. (B51) zero and_a subse_quent daughter_ smgulanty in t_he case of
0¢ Co strong anisotropy is the same as in Fig. 9, but with the fol-

) . _lowing scales: (a) outer daughter singularityz,~z,,

Surface energy terms do not enter this equation at the leading , BF, (t)[ £— £4(t)]~ %2 (b) size of the daughter singulari-
ordelr._31(;he isotropic surface energy term in EB46) is ty's inner regionO(B2°X+N), (c) inner singularity(count-
O(B*~°°)<1, while both the anisotropic surface eNergy aply infinite in number z§~C(t)[§—§m(t)]Z’3, (d) outer
terms in Eq(B46) areO(B*"* 3% < 1. We notice that at the N _ : : i

: : | zero z,~ 2o [ {—{o(t) ], (e) size of the zero singularity’s
next order, isotropic surface energy terms are more importanf, o, regionO (BN
than the anisotropic ones. The soluti@51) that matches

with Eq. (B49) is given by Lower bound on singularity strength for distinct inner regions

x 2& Recall that we had earlier found that the initial strength of
G=20,(£4(1),1) c F1(0)x~ "2 (B52)  a singularity|E(0)|, not too close to the real axis, had to be

0 larger than3?”%, otherwise any trace of this initial singularity

is wiped out by surface energy effects on a fast time scale. It
turns out that the same limitation occurs when we require
that the inner regions around a singularity and a zero induced
by a singularity be distinct. Otherwise, traces of initial sin-
gularity or a zero cannot persist for long.

_ _ _ To understand these limitations, recall that f&g(0)]

We notice that in the outermost spatial scale, _neglected\ggm, the analysis of Sec. A 2 suggests that the inner scale
surface energy terms play a role only on a long time scalgyound such an initial singularity quickly expands to a size
t=0(B%"1)>1. We now seek an inner scale where theo(|Eq(0)| ). With local singular behaviorz,~A.(0)
surface energy effects occur in .thelleading-order equation- Eo(0)[ £~ £4(0)]~#, with |Eo(0)]<1 andAy(0) of order
over anO(1) time scale. The choice is O(1), it is clear there can be a zefp(0) nearby so that

_ £0(0)—24(0)|=0O(|Eo(0)|*P). Thus, the inner region
81=7(1+N);  5,=0 (B53) Lround a sinlgulari|ty wiII| have engulfed such a zero very
quickly, before the corresponding zero-surface-energy singu-
larity {4(t) or zero{y(t) has a chance to move far. From the
¢ &e*i“”OCS’Z(t) viewpoint of an initial zero, induced by the weak singularity,

This is clearly not valid ag— 0 since the neglected term
G¥? must eventually become important with shrinking
and this is discussed next.

The innermost region, with evolution on an Q1) time scale

and

— . (B54)  the inner spatial scale for weak anisotropy implied by Egs.
0 2iZg7(La(1),1) (B1), (B18), and (B21) suggests an inner region around

£0(0) that scales a®?7z,,Y"(£,(0),0). Sincez,,(Zo(t),t)
Then, Eq.(B46) leads to —0(|E4(0)| 18y, it follows that this inner spatial region
G.——2(G% (855) with O(B?"|Eq(0)|Y("®) dimension includes’s(0), when
T3V X e |Eo(0)|<BP". In the case of strong anisotropy, from Egs.
(4-30y (B1), (B39), and(B40), it follows that the inner region scales
' asO(BZATNAYE(0)[%(28)), which may not includg(0).
However, it is clear that in all cases, the initial traces of a
weak distinct singularity and its corresponding zero are
wiped out completely by surface energy effects acting on a
fast time scale. "
A ) On the other hand, ifE,(0)|> B, following the scaling
Gy~ aF(0x (B56) results of Sec. A 2 and above, the inner regions are found to

There exists a similarity solution satisfying this matchingPe distinct.

The neglected isotropic surface energy terr®{$'
while the other anisotropic term in Eq(B46) is
O(B+*M/My | The appropriate far-field matching condition
for solution G above, corresponding to matching of the
outer-inner solution, is

condition in the form(A16), with B=9/2. At singularities, '!'hus, we conclude that the cutoff singularity strength is
of this solution, whereG, is locally proportional to { defined by
_ #1203 ; i i i

{in)<"", one must require an inner-inner region where the |Eo(0)] cuoi= O(BF2). (B57)

neglected isotropic surface energy term in H846) is the
same order as the> term. For a pole, this i<O(B3).
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APPENDIX C: MOTION OF DAUGHTER SINGULARITIES residue theorem’ using a contour in m]:éo’ just as in the
VERSUS ZERO SINGULARITIES first paper for the pole solutions. The resulting system of
IN SMALL-RESIDUE EXACT SOLUTIONS equations for the daughter trajectories becomes
We noted before in Appendix B that corresponding to N+1 1
each initial zero ofz,, there exists a daughter singularity, ZdA(t): 2> —— - . ,
Z4(t), where an assumed asymptotic expansiorziarpow- . n=1 Zg(£on(1),8)2(Z5n(1), D[ £5n(t) = Laj(D)]
ers of B becomes disordered, even thougit), in general,
is a regular point of the associated zero-surface-energy solu- (CY
tion. {4(t), while not an actual singularity of;, defines the )
center of a cluster of actual singularitiéseferred to as a £4j(0)=£05(0), j=1,... N+1. (C2)

Qaughter singularity .clust)aof 2 u'ntil.the time thatf(t) Recall from the first paper that there adepoles andN+ 1
impacts the real axis. Beyond this time, the concept of 4cr0s. and so there ket 1 daughters, one for each zero. In
daughter singularity cluster does not exist since the Clustetr ’ ’ :

appears to break up and disperse. Nonetheless, it is knOWhe numerical solution of the pole equations, we could easily
that the impact of a daughter singularity cluster on the real ppend Eq(C1) to the system of equations in the first paper

. . ; . nd numerically obtain the daughter trajectories while we
axis can singularly perturb an interface and cause it to veeliain th | ; .
from the corresponding zero-surface-energy solution even tain the pole trajectories. - " .
For the special case of an Ivantsov initial condition with

when such solutions are smooth. E;=0 in Eq. (27), the only zero remaining is the Ivantsov
In [1], we noted that, in the context of exact pole solutions_’ g ' y 9

of the zero-surface-energy problem, zerozpfan impact zero{gn+1- Therefore, only the lvantsov daughter singular-

the real axis, even when they are initially @{1) distance ity at {={qn. 1 remains in Eq(C1), and its governing equa-
. . . -~ __tion reduces to

from the real axis. Such impact causes formation of an inter-

facial cusp, and, beyond that time, the solution is unphysical. Lons1(D)=—1, (C3)

Thus, we naturally ask how it is that arbitrarily small surface

energy modifies this cusp-formation conclusion of the corre-

sponding zero-surface-energy solution. One possible sce- ZdN+1(t):_T1 (C4
nario is that the interface comes close to forming a cusp N+l
before surface energy effects become important and modify Cansa(0)=—1. (C5)

the structure. A second option is that the interface veers
sharply away from the zero-surface-energy solution, due tqhis equation has the solution
the impact of daughter singularities, long before any zero
comes close to the real axis. For specific solutions, prior Lan+1(D)=i(1—+4-21), (Co)
analytical and numerical calculations for the isotropic Hele-
Shaw problem suggest the latter explanation is the right on#dicating that the Ivantsov zero moves along the imaginary
for an exterior problem where a sink is located-atThe  axis from{=—i to the origin, hitting at=3. This simple
question remains: Is the latter scenario correct in generala@se demonstrates again that the singular nature of the
Does a daughter singularity necessarily impact the real axi§— 0 limit is not limited only to the vicinity of the zeros and
before the corresponding zero, thus preventing an interfac@ngularities of the3=0 solution. For B=0, an initial
from developing a cusp? In general, we do not know thdvantsov parabola remains unchanged for all time. However,
answer to that question. However, we consider in this sectiofPr any small nonzero surface energy, a daughter singularity
a wide class of exact solutions containing large numbers ofmpacts the origin in thg plane(crystal tip in thez plang at
poles with small residuegstrength and find our intuiton t=3, signaling the time when arbitrarily small surface en-
verified. Further, numerical solutions for special cases, agrgy will generally cause the actual solution to veer away
described in Sec. C 3, support the same conclusion, evdfom the Ivantsov parabola.
when the residues aret small.

We found in Sec. IV, that, as for the isotropic Hele-Shaw 2. Small-residue theory
problem[2], the daughter singularity trajectory is governed
by the same equations as any other zero-surface-energy si
gularity, provided the daughter singularity has not hit the rea
axis. (As mentioned above, the daughter singularity concep
does not make sense beyond the impact fine.[1], we
examined the zero-surface-energy problem in great detail f
the class of initial conditions for which all singularities of
are poles. In this section, we will now add the daughter tra
jectories to these pole solutions.

_We now incorporate the daughter singularities into the
tensively developed small-residue theorny bf, in which

gll the E; = eEj , €<1. As we shall see, this approach meets
with moderate success only. There are therefotel zeros.
ofhe firstN of the related daughters are associated with\the
poles; the N+ 1)st daughter is associated with the Ivantsov
zero. As in the first paper, we divide theoretical consider-
ations into several cases, according to the sizeyQof o,
and now gy, but in this paper we consider only the initial
segments of the trajectories for whiefy, 7y, 7o>0(€)
only.

When all the singularities of thB=0 solution are poles As in [1], we begin by defining a regular asymptotic ex-
of z,, the integral of the governing equation for the daughterpansion for the daughter singularities. If all the poles are so
singularity dynamics, Eq(131), can be evaluated with the far from the real axis thdtysj|> e, the motion of the daugh-

1. Daughter singularity equations
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ter singularities is governed by +0(e). In fact, the daughter singularity will hit the axis in
5 finite time, unless by chance it is shielded by another singu-
Laj(t)~ Ly (1) + €dg (1) +O(€%), (€7 Jarity, say a pole.

Although Eg. (C14) makes it clear that the Ivantsov
q.(¢.t;B= O)~qlo(§,t)+eqll(g,t)+0(ez), (C8  daughter singularity hits the real axis in finite time, we are
also interested in finding the conditions that determine
whether or not the companion daughter singularities reach

gdo,-(t): _qlo(gdo,-(t)'t)’ CI  the vicinity of the real axis before poles or zeros. The equa-
. tions for the imaginary coordinates of the zero and daughter
{a,, (V=01 (La, (1), (1) + a1, (Lay, (),1), smlguLarltles are simplest if they are written relative to the
(c19 PO e (for —ps>¢),
L3, (0)=o, (0), (c11 m{%)(t)
§dlj(0):§olj(0)- (C12 :Im<50j;§sj>(o)
Note that all the 0 and 1 perturbation subscripts refer to
powers ofe, not powers of B, since all of the analysis in o« &sj(0) &sj(1) +[1— 75;(0) J[1— 75;(1) ]
this section is for zero surface energy. Recall frpghh that §§j(t)+[l— 7731.(»()]2
500,- = gsoj for j=1,...N. Therefore, the equations for the first
N daughter singularitiegthe “companion” daughter singu- +Re< g01'_§SJ'> (0)
larities) are identical to those for the pole singularities, with €

the differing initial conditions forgdlj. We can thus find the £6(O)[ 1= 75(1)]— £,(D[ 1= 7(0)]
X

location of the firstN daughter singularities in terms of the , (C1H
pole locations, fgj(t)ﬂl_ 7si(1)]?
iE, i_gsj(o)) , Im(z()j—zsj)(t): ~ Re(E)é&(t) +Im(E)[1+ 75i(0)]
() ~Zsi(t)—€ - . +0 , 2 112 '
Lail)~Lsy()—€ i—¢si(t) \i+¢5(0) (€9 € &5j(D+[1+ 75i(0)] c16
i=1,...N. (C13

e(z(Jj—;sj)(t): ~ Re(Ep[1+ 7i(t)]— Im(Ej) £(t)
€

Note the resemblance to the equation for the companion ze-R O [1+ 7o (D]
ros from the first paper. Also, since the outer solution for the s s (C17
pole breaks down asgy;—0, this outer solution for the

daughters will also break down ag—0. We see that the | js generally difficult to determine the sign of tdy;
first N daughter singularities remain @(e) neighborhoods s y/€](t). The equations simplify dramatically, however, if
of their companion pole and zero singularities. Therefore, thgye start the pole on the imaginary axis between the Ivantsov

supposition from Sec. IV that daughter singularities movezerg and the real axis, so that0- 7sj(t)<— 775;(0)<1. In
aWay from the Zero Singu|al’ities iS true in terms Of tﬁe this case, the imaginary parts become

scales, but not in terms efscales. Recall from the first paper

that 'Fhe zero singularities depend only on the instanta_neous Laj— Lsj Im(Ej) 1— 7/(0)
location of the poles, but, from EGC13), the daughter sin- Im| ———|()=—7_ 0 1+ 7.(0)" (C18
gularities also depend on where the pole started. Since the € 7s] 7s]
pole also depends on its initial condition, developing a crite- A
rion for the daughter singularity collision with the real axis, Im( Soj~ 4“5,-) (t)=— Im(E)) (C19
analogous to that for the zeros found in the first paper, is € 1+ 7mg5(t)°
quite a task. ) . .
The (N+1)st daughter singularitythe Ivantsov daugh- Which can be combined to give us
ter), however, is special in that there is no companion pole
and the Ivantsov zero remains in the neighborhood of Im(M>(t)=lm M)(t)
—i. Therefore, the Ivantsov daughter will proceed to the € €
neighborhood of the origin alone according to y 20 74i(t)— 75;(0)]
fania(D)~1(1-V4=20+0(e),  (C14 (1= 75{(O][1+ 75(0)]
(C20

which, to the leading order, is the same as the one for an

Ivantsov initial condition(C6). Unlike the firstN daughter The factor on the right is positive, therefore, if the zero is
singularities, though, this expansion is regular @s—0.  closer to the real axis than the pole, which mean§(Jg
Once again, we see very nicely that the Ivantsov daughter{s)/e]>0, then the daughter singularity is closer still,
singularity reaches the neighborhood of the origintats Im[(Z4j— ¢0j)/€]>0. On the other hand, if the pole is closer to
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the real axis, the daughter singularity and the zero are both  0.20
shielded by the pole. The Ivantsov daughter singularity

Lan+1 Will be initially shielded for both of these cases, too.

If Re(E;)=0, then the pole will continue heading for the 0.00 . . . . .
origin for all time, otherwise the pole will head f@r= *£
once it is close enough, as in the first paper. If the pole
should leave the imaginary axis, then the Ivantsov daughter

singularity will no longer be shielded and will continue -0.20

heading for the origin. If the pole starts on the imaginary

axis below = —1i, then the Ivantsov daughter singularity

gets to the real axis before the pole-zero-daughter group. _ 4 4 | Moy Mo Ma

Observe that in all cases discussed so far, the zero cannot
be closest to the real axis; it is always shielded by the pole
or daughter singularity. Furthermore, the only way to prevent
the Ivantsov daughter from reaching the origin is to -0.60 |
have Ref;)=0, which corresponds to an indentation running
along the longitudinal axis of the crystal, a tip-splitting
situation. For initial conditions that do not lead to tip split- 080 |
ting, the lvantsov daughter will reach the crystal tip by
t=32+0(e) and the zero-surface-energy solution will no
longer completely describe the leading-order crystal evolu-

tion. -1.00
Equation (C15) also simplifies if we start the pole on 000 050 100 150 200 250  3.00
7s(0)=—1, with |£;(0)|>O(e) to maintain consistency (a) t
with the assumptions of the first paper. Far T 74(t)> €, 0.001
the imaginary parts become
No-Ns
|m(§d] gOJ)()— Re(E;) —— 0
ggj(t)+1 J &5i(0) 0.0005 +
- fsj(O)—és;(t)>
+Im(Ej) ———=—1, (C2
0 : . : : :
ReE) &g (1) +Im(E, 3
Im (50] gs;)(t)__ e( ])ngJ( ) ( j). (C22) =
In order for the zero to approach the real axis first, we need 0" To-Ta
Im[(Z4;— &0j)/€]<0 and 1M ({;—&s;)/€]>0. This is possible if
Re( IAEJ') = £ 0.001 -+
————<IM(E))<—ReE,)&; (1), Cc23 -
so that there is a range of parameters and initial conditions
that allows the zero singularity to get ahead of the pole and

-0.0015

daughter singularities. This may be a temporary condition, 000 050 100 150 200 250 300

however, since the daughter singularity’s expansion breaks (b) ‘

down asny— 0 and inner equations adjacent to the real axis

may allow the daughter singularity to catch up to the zero g, 10. Simulation showinga) the trajectory of a pole, zero,

singularity. These inner equations proved to be analyticallland daughter grough) the zero singularity’s temporary lead over

intractable, so we turn now to the numerical solutions of thehe daughter and pole singularities, followed by the daughter singu-

governing equationgC1) and(C2). larity’s acceleration and impact with the real axis ahead of the zero
singularity, preventing cusp formation.

when the daughter singularity approaches the real axis first,
then the zero and pole are always behind the daughter and
We turn now to the task of obtaining the daughter trajec-the daughter hits the real axis in finite time. Next, if the pole
tories numerically, by modifying the computer program usedapproaches first, then the zero and daughter are always
in [1] to include Eq.(C1), for the case when the initial dis- shielded by the pole. On the other hand, if the zero ap-
tribution of singularities includes poles only. We find that proaches first, then once it is close enough to the real axis, it

3. Numerical solutions
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generates a speed-up in the daughter singularity, which hdace from ever getting close to formation of a cusp—in spite

just enough time to get ahead of the zero and reach the reaf the fact that the corresponding zero-surface-energy solu-

axis first(Fig. 10. tion predicts a cusp. The daughter singularity impact causes
Therefore, we tentatively conclude that the zero singularithe solution to veer dramatically from th8=0 solution.

ties never hit the real axis first; they are always shielded b)Surprisineg, such a dramatic departure from B0 solu-

the pole singularities or outrun by the daughter singularitiestion occurs in spite of the fact that the curvature term in the

even if the zero is temporarily ahead of both. Therefore, ondull equations, evaluated for the zero-surface-energy solu-

role of surface energy is to prevent an initially smooth inter-tion, is not large.
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