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Dendritic crystal growth for weak undercooling. II. Surface energy effects on nonlinear evolution
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We extend the previous work of Kunka, Foster, and Tanveer@Phys. Rev. E56, 3068 ~1997!# by incorpo-
rating small but nonzero surface energy effects in the nonlinear dynamics of a conformal mapping function
z(z,t) that maps the upper-halfz plane into the exterior of a dendrite. In this paper, we specifically examine
surface energy effects on the singularities ofz(z,t) in the lower-halfz plane, as they move toward the real axis
from below. Until the time when any of the singularities of the corresponding zero-surface-energy solution or
a surface-energy-generated daughter singularity cluster comes very close to the real axis, the leading-order
outer solution is the zero-surface-energy solution in a strip of the lower-half complex that includes the real axis
~i.e., the interface!. There is an inner region around each singularity of the zero-surface-energy solution where
surface energy plays a dominant role. However, the scalings in such an inner region, and hence the equation
itself, must be modified when such singularities are very close to the real axis. The relative ordering of
anisotropy, surface energy, and singularity strength strongly influences the form of the inner equations and
hence their solutions. A singularity with initial strength weaker than some critical value is dissipated over a fast
time scale by surface energy effects, leaving no trace of the initial singularity. This cutoff in singularity
strength limits the size and growth rate of the interfacial disturbances that singularities generate. Also, the
variation of time scale over which surface energy acts, due to differing singularity strengths in an ensemble, is
shown to account for auyu1/2 coarsening rate for some intermediate range of distances,uyu, from the dendrite tip.
As in the case of the isotropic Hele-Shaw problem@S. Tanveer, Philos. Trans. R. Soc. London, Ser. A343, 155
~1993!#, we find here too that each initial zero ofzz gives birth to a ‘‘daughter’’ singularity cluster that moves
away from the zero and necessarily approaches the real axis, before dispersing. One effect of this ‘‘daughter’’
singularity cluster, if it approaches the real axis before any other singularity, is to singularly perturb a smoothly
evolving zero-surface-energy solution. In addition, numerical and analytical results for a certain general class
of initial conditions indicate that daughter-singularity effects necessarily prevent an interface from ever ap-
proaching the cusp implied by the corresponding zero-surface-energy solution. Finally, we find that for a set of
localized distortions, the local rescaling of dependent and independent variables~i.e., on an ‘‘inner scale’’!
leads to the original equations, with an effectively larger surface-energy parameter.@S1063-651X~99!04501-8#

PACS number~s!: 81.10.Aj
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I. BACKGROUND

Dendritic crystal growth has been a subject of interes
physicists, metallurgists, as well as mathematicians.
most common example of such a growth is the well-kno
ice crystal. From a physicist’s perspective, dendrites con
tute a relatively simple but important problem of pattern fo
mation in nonequilibrium growth@3–5#. In metallurgy, den-
drites are common to crystal formation in the manufacture
alloys when the growth rate exceeds some critical value.
literature on the subject is vast and reviewed in@3–6#, as
well as in paper I@1# of our current sequence of papers
this subject. In this paper, we refer only to that work mo
directly relevant to the issues addressed here.

In the first of a sequence of papers on dendritic crys
growth for weak undercooling@1#, we derived asymptotic
equations for weak nondimensional undercoolingD ~nondi-
mensionalized appropriately, through a combination of lat
and specific heat! for a dendrite that is asymptotically a pa
PRE 591063-651X/99/59~1!/673~38!/$15.00
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rabola in the far-field. A Peclet number,P, was introduced in
accordance with

D5ApPePerfc~AP!, ~1!

which is clearly small for smallD. Based on the length scal
a, associated with the far-field parabola, a velocity sc
U52DP/a was identified, whereD is the diffusion coeffi-
cient. a anda/U are used to nondimensionalize all lengt
and times. We determined that if the initial deviations fro
an Ivantsov state~parabolic dendrite with a correspondin
temperature profile! are limited to anO(1) region near the
tip ~region I!, then the dynamic evolution of the dendrite fo
the nondimensional timet!P21 involves theO(1) tip re-
gion only; in that region, the temperature is harmonic to
leading order, with appropriate boundary and far-fie
matching conditions. It is to be noted that the derivation do
not assume that the deviation from the Ivantsov state
small, only that it does not extend all the way to the far-fie
673 ©1999 The American Physical Society



in
on

r

e,

l

g
of

ll
h a

e
as
ut

lly
h a
In

se to
e in

on-

ua-

ies
to

ng
ini-
nd
s
in
n
lem
-

m-
rity
tur-
red.
th a
ic-

nd
the
rity
-

e
lly

rity

674 PRE 59M. D. KUNKA, M. R. FOSTER, AND S. TANVEER
O(P21) region. This tip-region dynamics was recast
terms of the evolution of the conformal mapping functi
from an upper-halfz plane (z5j1 ih) to the exterior of the
dendrite in thez plane, wherez5x1 iy ~see Fig. 1!. This
functionz(z,t) was shown to satisfy the following nonlinea
integro-differential equation for realz ~i.e., on thej axis!:

zt5~H1 iR!zj , ~2!

where

R~j,t !5
12B Im vj

uzju2 , ~3!

2H~j,t !5H$R%~j,t ![2
1

p
2E

2`

1` dj8

j82j
R~j8,t !, ~4!

v~j,t !5K~j,t !1 iH$K%~j,t !, ~5!

where

K~j,t !5@11a f ~j,t !#k~j,t !, ~6!

k~j,t !52
1

uzju
Im

zjj

zj
, ~7!

f ~j,t !512cos 4~u2u0!512ReS zj
2

zj*
2 e2 i4u0D . ~8!

The integral in~4! is a principal-value integral. In the abov
the nondimensional surface energy parameterB is given by

FIG. 1. Conformal mapping from the upper-halfz plane to the
exterior of the dendrite in thez plane.
B5
cpd̃0TM

2aLP
~9!

whered̃0 is the capillary length,cp is the specific heat,TM is
the melting temperature of a planar interface, andL is the
latent heat. Further, in the above,k is physically the nondi-
mensional curvature and 11a f is a fourfold surface energy
anisotropy correction. Hereu the angle between the norma
to the interface~pointing towards the melt! and they axis,
while u0 is some fixed value denoting a direction alon
which surface energy is a minimum. We define the set
Eqs.~2!–~8! with B51 as the ‘‘standard problem.’’ We sha
see later that this problem arises time and again throug
local renormalization in the smallB limit near an approach-
ing complex singularity. The ‘‘standard problem’’ can b
solved numerically through a boundary integral method,
will be shown in paper III of this paper sequence, witho
much of the difficulties for smallB.

Through a linearization of the equation forz(j,t) about
some generally time-dependent state, we@1# were able to
determine an expression for the growth rate of an initia
localized disturbance in terms of the base state, throug
Fourier analysis, when the disturbance is far from the tip.
the special case of a base state that is steady and is clo
an Ivantsov state, the expressions for the growth rate wer
accordance with prior results@7#. Interestingly enough, it
was possible to obtain the same results by analytically c
tinuing Eqs.~2!–~8! to the lower-half complexz plane and
carrying out an asymptotic analysis for the linearized eq
tions near singularities ofzz .

It is to be noted that while the lower-halfz plane does not
correspond to any part of the physical domain, singularit
of z(z,t) approaching the real axis from below correspond
interfacial distortions. In particular, we found that accordi
to the linearized dynamics, surface energy prevents an
tially localized disturbance from remaining localized beyo
a certain time. Arbitrarily small initial interfacial distortion
~noise!, representable by some singularity distribution
Im z,0, significantly affect the interface later in time whe
singularities of the associated zero-surface-energy prob
approach or cross Imz50, even though surface energy lo
cally smoothes out all singularities in the linearized dyna
ics. The extent to which the zero-surface-energy singula
dynamics relates to the growth rate and dispersion of dis
bances for small nonzero surface energy was also uncove
Hence, zero-surface-energy singularity dynamics have bo
qualitative and quantitative impact on the physical pred
tions mentioned above.

The relation between complex singularity dynamics a
the evolving physical features of a dendrite transcends
restriction posed by linearized dynamics since a singula
of the conformal map in Imz,0 can result in large interfa
cial distortions when that singularity approaches Imz50. In
particular, if we consider an isolated singularityzs(t) of zz in
the lower-half plane so that

zz;E0~ t !~z2zs!
2b ~10!

nearz5zs(t), then if zs(t) is very close to the real axis, w
can expect a distortion as sketched in Fig. 2 that is loca
rounded off over a length scale determined by singula



e

te

ity
er
ge:

-

the

t

l
the
s
to-

to

d
eal

. 2

p on
ted
e,

or
eal
ite
sp-

ded
g

nce
am-

on

jus-
ded
ce
-

m-

g

e

PRE 59 675DENDRITIC CRYSTAL GROWTH FOR . . . . II. . . .
distance2Im zs from the real axis. Note that ifE0(t) is
sufficiently small and/oruIm zsu is sufficiently large, there
will be little effect of a complex singularityzs on the inter-
face shape. The largeruE0u ~singularity ‘‘strength’’! is, the
larger is the impact region on the interface. argE0 determines
the orientation of this distortion relative to they axis. The
physical effect of an isolated complex singularity corr
sponding tob51 ~pole! is illustrated in Fig. 3, wherens
5Im zs.

It is to be noted that the geometrical features at the in

FIG. 2. Dependence of the indentation geometry on the sin
larity parameterb.

FIG. 3. Geometry of a pole indentation; the logarithm is base
-

r-

face associated with Eq.~10! discussed above will remain
intact for a period of time, even when the actual singular
at z5zs(t) is smoothed out or replaced by a cluster of oth
singularities, provided there is some intermediate ran
Bd!uz2zs(t)u!1 for somed.0 and some set of realz for
which the behavior~10! persists.

Prior work for dendrites@1#, as well as for the mathemati
cally analogous Hele-Shaw problem@2,8,9#, shows that the
zero-surface-energy dynamics preserves the form of
singularity—i.e.,b in Eq. ~10! remains invariant with time;
only its positionzs(t) and its strengthE0(t) evolve ~except
for a pole whereE0 is invariant!. Whenb,0, the form~10!
is not invariant. Generally for an initial singularity of tha
kind,

zz;A0~ t !1E0~ t !@z2zs~ t !#2b ~11!

for z sufficiently close tozs . Such a singularity on the rea
axis does not introduce discontinuity in slope, except in
nongeneric case for whichA050 at the same instant a
Im zs50. In this exceptional case, the corner is directed
wards the melt, in contrast to theb.0 case, when it is
directed towards the crystal.

All singularities, regardless of their type, were shown
continually approach the real axis with time, though forb
. 1

2 they do not impinge the real axis in finite time—indee
they slow down significantly as they come close to the r
axis.

A point wherezz50, but zz is otherwise analytic, is re-
ferred to as a zero. The geometric distortion shown in Fig
is still valid if we associateb521 with a simple zero, i.e.,
a zero on the real axis corresponds to a zero-angled cus
the interface that protrudes into the melt. Prior work repor
in @1# has shown that a zero remains invariant with tim
when surface energy is neglected, i.e.,

zz;zzz„z0~ t !,t…@z2z0~ t !# ~12!

for z nearz0(t). The evolution equation forz0(t), however,
is found to be different from that of a singularityzs(t). In
particular,z0(t) may or may not approach the real axis. F
some set of initial conditions, a zero does impact the r
axis in finite time. The mathematical solution for the dendr
ceases to be physically meaningful beyond this cu
formation time.

The connection between the dynamics in the exten
domain Imz<0 and the physical features of an evolvin
dendrite, as described above, is particularly useful, si
there is strong evidence that the zero-surface-energy dyn
ics in the extended domain is well-posed~see@2,10# for evi-
dence for the mathematically similar Hele-Shaw problem!, in
contrast to the ill-posed nature of the interfacial evoluti
itself. In the latter case, the domain is restricted to Imz50.
This well-posedness at the zeroth order mathematically
tifies a systematic perturbation procedure in the exten
complex domain to study how small but nonzero surfa
energy~with or without anisotropy! alters the zero-surface
energy dynamics. The viewpoint we followed in@1# and
here, following the Hele-Shaw analysis with isotropy@2,11#,
is that the interfacial dynamics is a byproduct of the dyna
ics in the extended domain.

u-

.
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A necessary drawback to the above-mentioned proce
is that now one must specify initial conditions in the e
tended complex domain Imz<0, which obviously cannot be
done in an experiment where only the initial interface sha
up to some nonzero error, can be controlled. Connectio
the observed statistical features of an experiment can
made only by studying the statistics of an ensemble
complex-plane initial conditions, allowing for every concei
able singularity distribution, and with each member of t
ensemble consistent with the given initial shape to wit
experimental error. Clearly, many different singularity dist
butions can result in the same approximate interfacial sh
However, an essential precursor to such a statistical stud
the thorough description of the dynamics ofall possible
forms for singularities in Imz,0. Only when this issue is
clarified can one proceed with the statistical study for
ensemble of initial conditions. That such an approach may
relevant to experimental observations is already dem
strated in Sec. III C, where we obtain coarsening res
based on an ensemble of particular singularities. Howeve
general, the analytic continuation ofz(z,0) into Imz,0, cor-
responding to a general analytic initial shape, can be
pected to contain natural boundaries and perhaps other
gularities that are not isolated. Further, even the class o
possible forms of isolated singularities is too broad to stu
only a small subset of possible initial conditions contains
specific classes of isolated singularities and zeros, as in
~10! and ~12!, that are considered here. Nonetheless, s
isolated singularities, when they come close to the real a
do correspond to a range of interfacial distortions, depend
on b. For that reason, we believe that the statistical featu
of the interfacial dynamics within this limited class of initia
conditions are not very different from what is observed
experiment—with the additional proviso that a tw
dimensional theory is relevant, at least for scaling pred
tions.

However, even within the class of possible initial sing
larities studied here, there are basic mathematical issues
cerning the asymptotic matching of inner and outer regi
in the complex plane~as the surface-energy parameter go
to zero! that remain unresolved. In carrying it out in th
neighborhood of a singularity that is preserved by the ze
surface-energy dynamics, it is observed that the matchin
necessarily sectorial—the inner solution does not match
outer solution in every direction in the complex plane; it c
be matched in a certain sector only~see Fig. 4!. This is not a
surprising result, since the steady dendrite problem is kno
to have the same features. However, unlike the steady p
lem where there are well-defined global Stokes lines e
beyond the immediate vicinity of an inner region that det
mine local sectors of matching~see @12# for instance!, no
basic mathematical principle exists for the time-evolvi
flow. Only local Stokes lines, corresponding to local simila
ity solutions of the partial differential equations in the inn
region, can be identified. We invoke a matching princip
based on one used in the Hele-Shaw context@2#. The only
direct evidence that such a matching principle is sound is
prior finding, in@1#, that there is consistency between resu
from a Fourier analysis in the real domain and a comp
singularity approach involving inner-outer matching for t
linearized problem.
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Further mathematical difficulties arise with initial zeros
zz , since the full investigation of the dynamics at differe
stages is hampered in many cases by lack of either analy
or numerical solutions to a set of complicated partial diffe
ential equations in the complex plane. It is to be noted t
the mathematical theory of nonlinear higher-order partial d
ferential equations in the complex plane is quite undev
oped. Progress in this case has been made in this paper,
@2#, with additional ansatz on the dynamics at intermedi
stage~s!. There is no direct evidence that these ansatz
correct by themselves, though the careful numerical calc
tions of the interfaces themselves, for a sequence of com
tations for decreasing surface energy, indirectly confirm
basic features of the analytic theory, both for the associa
isotropic Hele-Shaw problem@12# and also for anisotropic
Hele-Shaw and dendrite problems. The latter work will
reported as paper III of this sequence of papers.

Despite the qualifiers above and the fact that our met
necessarily requires a lengthy investigation of complex
namics involving many kinds of initial singularities with co
responding inner equations depending on their distance f
the real axis as well as the relative ordering of anisotropy
surface energy, this technique is the only one known for
fully nonlinear, time-evolving dendrite in the small-surfac
energy limit. This limit is precisely the most difficult to ex
plore computationally, since resolving small capilla
lengths necessarily strains the capacities of computers.
ther, even for cases whereB is not small, the small-surface
energy limit cannot be avoided at large distances from
dendrite tip, where the curvature of an essentially parab
interface becomes small.

In this paper, then, we continue our study of compl
singularities initiated in@1# by including small but nonzero
surface energy (0,B!1) in the nonlinear dynamics in th
extended complex domain, generally taking anisotropy i
account. The purpose of this paper is to address, partly
wholly, the following important issues.

~i! How does a nonzeroB alter singularities described in
Eq. ~10!? Do the alterations and modifications to the sing
larity stay confined to a small cluster aroundzs(t)? Is there

FIG. 4. Schematic of sectorial matching. Arrows indicate dire
tion of matching toward the physical domain.
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an intermediate spatial scale over which the behavior~10! is
relevant asB→0? If so, is there a limitation on the order o
uE0(0)u and the time for which this behavior persists? Ho
does anisotropy in surface energy come into play? The m
results relevant to these issues appear in Sec. II C.

~ii ! What are the temporal and spatial scales over wh
surface-energy effects become important to the real axis
namics for a singularity corresponding tob. 1

2 ? Recall that
according to zero-surface-energy dynamics, such singu
ties do not impinge the real axis in finite time, though th
continually approach it. This question is discussed at the
of Sec. III A.

~iii ! For singularities corresponding to 0,b, 1
4 , which

are known, in the absence of surface energy, to impact
real axis in finite time~leading to corners at the interface!,
what are the smallest length and time scales associated
a small nonzeroB, when Imzs(t)→0? The scales are dis
cussed at the end of Sec. III B.

~iv! What can be said about the growth rate of interfac
distortions associated with approaching complex singul
ties discussed above in Eqs.~1!–~3!? How does surface en
ergy, by dissipating weak singularities, determine a cutof
the growth rate? How does anisotropy affect the result?
answers to these questions are explained in Sec. III C 2.
often stated in the literature that interfacial distortions t
point towards the crystal appear to remain stationary in
laboratory frame. Possible limitations on the time scale o
which stationarity is valid are discussed in Sec. III C 1.

~v! What is the effect of anisotropic surface energy on
initial zero? Is there a ‘‘daughter singularity’’zd(t) that
emerges from an initial zeroz0(0), as for theisotropic Hele-
Shaw problem@2,11#? If so, how does anisotropy alter th
structure of the cluster of actual singularities ofzz that are
centered atzd(t)? These issues are discussed in Sec. IV.

~vi! How does a daughter singularity impacting the re
axis affect the interfacial features? As with the isotrop
Hele-Shaw problem, can one expect the daughter singula
impact time to indicate when an actual interface will veer
from the corresponding zero-surface-energy solution? S
tions V B and V C deal with these issues.

~vii ! How are interfacial cusps, associated with the imp
of a zeroz0(t) on the real axis in finite time, prevented b
small surface-energy effects? Are small nonzero surfa
energy effects only important when the interface becom
close to a cusp, i.e., when curvature of the zero-surfa
energy solution becomes large? Or, is it that the interf
never comes close to cusp formation because it necess
veers off from the corresponding zero-surface-energy s
tion significantly before anyz0(t) can impact the real axis
In the context of complex singularity dynamics, the two sc
narios are distinguished by the following question: doe
daughter singularity atz5zd(t) necessarily impact the rea
axis before the corresponding zero atz5z0(t)?

~viii ! What is the evolution in time of a given disturban
that may be associated with many different complex sin
larity distributions but causes anO(1) localized deviation in
interfacial slope from a smooth background state? Is the
rescaling under which the equations remain invariant in
small-surface-energy limit? What does such an invaria
tell us about the dynamics?
in
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~ix! How do surface energy and anisotropy modify
confirm the coarsening scenario that we proposed in@1#? The
selection effect of surface energy on an ensemble of assu
singularities of different strengths is examined in Se
III C 3, resulting in a prediction for the coarsening rate ov
a range of distances from the dendrite tip@see Eq.~124! and
comments following it#. The daughter singularity effect an
the concomitant selection of local tip characteristics are a
found to qualitatively influence coarsening, as discussed
Sec. VII.

Note that while some of the issues listed appear theor
cal in nature, apparently related more to complex singula
dynamics than the interface itself, the nature of our inve
gation precludes meaningful separation of the two. For
stance, whether or not a singularity initially far from the re
axis is dissipated by surface energy before hitting the r
axis determines if corresponding physical distortions at
interface would eventually be observed.

II. PERTURBATION EXPANSION NEAR A SINGULARITY
NOT CLOSE TO THE REAL AXIS

In the analysis presented here, we restrict our attentio
singularities for whichb.0, since it turns out that a form
~11! for b,0, with A0(t) strictly O(1), implies that surface-
energy effects near the singularity location atz5zs(t) do not
perturbzz to the leading order. This fact means that the l
earized analysis in@1# in a neighborhood ofzs(t) remains
valid. However, there are special cases forb,0, with
A0(t)5o(1), for which the linearized results discussed
@1# cannot be justified. Such exceptional cases are not a
lyzed in the current paper.

The analytic continuation of Eqs.~2!–~8! to the lower
half-plane was determined@1# to be

zt5c1zz1q22B
vz2ṽz

z̃z
, ~13!

where

q1~z,t !5
1

p E
2`

` dj8

j82z
R~j8,t !, ~14!

q2~z,t !5
2i

z̃z~z,t !
, ~15!

v~z,t !52K~z,t !1
1

p i E2`

1` dj8

j82z
K~j8,t !, ~16!

K~z,t !5@11a f ~z,t !#k~z,t !, ~17!

f ~z,t !512
1

2 S zz
2

z̃z
2 e2 i4u01

z̃z
2

zz
2 ei4u0D , ~18!

k~z,t !52
1

2izz
1/2z̃z

1/2 S zzz

zz
2

z̃zz

z̃z
D , ~19!

where

F̃~z,t !5„F~z* ,t !…* ~20!
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is an analytic function which is equal toF* on the real axis,
where* denotes complex conjugation. It is to be noted th
z̃(z,t) is analytic in the lower-halfz-plane~except at̀ !. If
expression~16! for v is used in Eq.~13!, one obtains

zt5q1zz1q21
B

i z̃z
3/2 ~22zz

21/2!zz2
Bae2 i4u0

2i z̃z
7/2 ~ 2

3 zz
3/2!zz

2
Baei4u0z̃z

1/2

2i
~2 2

5 zz
25/2!zz1Br ~z,t !, ~21!

where r (z,t) lumps together all other surface energy ter
that contain derivatives ofz with respect toz of orders
smaller than the ones explicitly shown in Eq.~21!.

Beginning with the lower-half-plane Eq.~21!, we assume
a regular perturbation expansion in powers ofB in the
asymptotic limitB→0. The regular perturbation is denote
by

z;z01Bz11¯ , ~22!

zs;zs0
1Bzs1

1¯ , ~23!

q1;q10
1Bq11

1¯ , ~24!

q2;q20
1Bq21

1¯ , ~25!

v;v01¯ , ~26!

where subscript 0 has been used to denote the correspon
zero-surface-energy quantities that have been analyzed i
previous paper@1#. ~Note: They appear without subscript 0
@1#.!

A. Review of zeroth-order results

Substitution of the above perturbation expansion into
~22! and extraction ofO(1) terms obviously leads to th
zero-surface-energy problem studied in Sec. IV onward
the previous paper. From prior work@1#, we know that there
exists a solution to the zero-surface-energy equations
which

z0~z,t !5g~z,t !1(
j 51

N
Ej~z,t !

12b j
@z2z j~ t !#12b j , ~27!

whereg(z,t) andEj (z,t) are analytic for Imz<0 and satisfy
certain integro-differential equations,b j is a constant~possi-
bly different for eachj!, N is an arbitrary positive integer
andz j (t) evolves in time according to an equation@1#. In the
special caseb j51, the term (z2z j )

12b j /(12b j ) in Eq. ~27!
is to be understood as ln(z2zj). Exact solutions withb j all
equal to 1 have appeared in the context of the Hele-S
literature@13–17# earlier and we@1# also discussed such so
lutions in the dendrite context.

The form of the solution~27! means that singularities ar
preserved by the zero-surface-energy dynamics, a re
known in the Hele-Shaw context from prior work@2,8,9#.
Specifically, it is known that sufficiently close to any sing
larity type ~27!, denoted in general byzs , we obtain
t

s

ing
the

.

in

or

w

ult

zz;E0~ t !@z2zs~ t !#2b, ~28!

with b.0. Forb,0, b not an integer, the local behavior i
generally given by

zz;A0~ t !1E0~ t !@z2zs~ t !#2b, ~29!

sinceA0(t) is generally nonzero. From the known evolutio
equation@1#, it can be deduced that the ‘‘strength’’ of th
singularityE0(t) in Eqs.~28! and~29! and its locationzs(t)
evolve in accordance with

E0~ t !5E0~0!expS ~12b!E
0

t

dt8q1z„zs~ t8!,t8…D , ~30!

żs52q1„zs~ t !,t…. ~31!

The relations~28!–~31! characterizing the local behavior of
singularity hold more generally, even when global solutio
are not necessarily in the form~27!. In @1#, it was also deter-
mined that for anyz in the lower half-plane, Imq1(z,t),0,
which, from Eq.~31!, implies that singularities of the type
~28! approach the real axis.@Actually, all singularities, re-
gardless of their form, satisfy the relation~31!.#

Zero-surface-energy singularity behavior depends on
value of b. Within the class of singularities~28!, we found
that those singularities withb, 1

4 reach the real axis in finite
time, whereas those corresponding tob. 1

2 asymptote the
real axis fort→`. The case1

4 <b< 1
2 remains unresolved

We also found that among all singularities corresponding
b. 1

2 , simple poles (b51) approach the real axis expone
tially in time, but branch points (bÞ integer) approach alge
braically in time. Therefore, for a more general initial co
dition that contains singularities of the type~28! with many
different b, the indentations on the physical interface, ov
the short run, will be dominated by poles approaching
real axis.

B. First-order perturbation and nonuniformity near zs

The extraction of theO(B) term in Eqs.~22!–~26! expan-
sion, on the other hand, produces the following equation

z1t2q10
z1z5q11

z0z1q21
1r 01

1

i z̃0z
3/2 ~22z0z

21/2!zz

2
ae2 i4u0

2i z̃0z
7/2 ~ 2

3 z0z
3/2!zz2

aei4u0z̃0z
1/2

2i

3S 2
2

5
z0z

25/2D
zz

. ~32!

The nonuniformity caused by the presence ofq11
z0z in Eq.

~32! can be overcome if the zeroth-order approximation
the advective speed of a singularityzs is corrected as

żs52q10
„zs~ t !,t…2Bq11

„zs~ t !,t…, ~33!

meaning that we use the two-term perturbation expansio
Eq. ~23!, with
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żs052q10
„zs0~ t !,t…, zs0~0!5zs~0!, ~34!

żs152zs1q10z„zs0~ t !,t…2q11
„zs0~ t !,t…, zs1~0!50.

~35!

The last three terms on the right of Eq.~32! can clearly
become singular wherez0z

is singular, resulting in the pos

sibility of Bz1 in Eq. ~22! being larger or of the same orde
asz0 , i.e., the assumed asymptotic expansion~22! then be-
comes inconsistent~disordered!. To determine if and when
this happens, we have to study the local behavior neaz
5zs of the outer-perturbation series.

Since the local behavior of the zero-surface-energy s
tion z0z;E0(t)(z2zs0

)2b, b.0 also induces a singular be

havior of z1 , when the correction to the singularity speed
not accounted for, we seek a slight modification of the ou
asymptotic expansion in the immediate neighborhood o
singularity in the form

zz;E0~ t !@z2zs~ t !#2b1BE1~ t !@z2zs~ t !#d1

1BaE2~ t !@z2zs~ t !#d21BaE3~ t !@z2zs~ t !#d3,

~36!

wherezs is determined in accordance with Eq.~33!. In the
usual cases, the two-term local expansion above should
clude only one of the terms involvingE1 , E2 , or E3 . How-
ever, by including all three terms in Eq.~36!, we make al-
lowance for different possibilities depending onO(uE0u), b,
and uz2zsu. From Eq.~36!, it follows that the leading-orde
perturbation toz0 has the following local behavior nearz
5zs0 :

z1z;bzs1
~ t !E0~ t !@z2zs0

~ t !#2b211E1~ t !@z2zs0
~ t !#ds

1aE2~ t !@z2zs0
~ t !#d21aE3~ t !@z2zs0

~ t !#d3. ~37!

Substituting Eq.~37! into Eq. ~32!, we obtain

d15 1
2 b23, d252 3

2 b23, d35 5
2 b23 ~38!

and the evolution equation for the singularity strength,

Ė1~ t !2~ 1
2 b22!q10z

„zs0
~ t !,t…E1~ t !

52
b~b22!~b24!

4i z̃0z
3/2
„zs0

~ t !,t…E0
1/2~ t !

, ~39!

Ė2~ t !1~ 3
2 b12!q10z

„zs0
~ t !,t…E2~ t !

5
e2 i4u0b~3b12!~3b14!E0

3/2~ t !

8i z̃0z
7/2
„zs0

~ t !,t…
, ~40!

Ė3~ t !2~ 5
2 b22!q10z

„zs0
~ t !,t…E3~ t !

5
ei4u0b~5b22!~5b24!z̃0z

1/2
„zs0

~ t !,t…

8iE0
5/2~ t !

, ~41!

with initial conditions
-

r
a

in-

E1~0!5E2~0!5E3~0!50. ~42!

This set of linear first-order ordinary differential equatio
can be readily integrated, if desired. It is to be noted t
the addition of a possible term in Eq.~36! of the form
E1,1(t)@z2zs(t)#d111 does not effect the equations~39!–
~42! because of Eq.~33!. Similarly, an additional higher-
order term in the form@z2zs(t)#11d2 or @z2zs(t)#11d3 in
Eq. ~36! does not effect Eqs.~39!–~42!.

An explanatory note is in order about local behavior~37!
whenuE0(t)u!1. From exact expressions forz0 that contain
singularities of the type considered here, one can expect
even forb.0, there is anO(1) correctionA0(t) as in Eq.
~29!. Therefore, in order for the leading-order behaviorzz

;E0@z2zs(t)#2b to be valid, one must require

uz2zsu!uE0u1/b. ~43!

The same restriction~43! must also hold for Eqs.~36! and
~37!.

Further, in deriving Eq.~36!, it was implicitly assumed
that it is acceptable to replacez̃0z and global termsq10, etc.
by the first few terms of the Taylor expansion atz5zs(t).
However, these terms have singularities atz5zs* (t) in the
upper-half plane. We must therefore require thatuz2zsu
!uzs2zs* u, i.e., uz2zsu!uhsu. Hence, whenzs approaches
the real axis, the domain of validity of Eq.~36! shrinks so
that Eq.~36! cannot hold on the real axis itself.

We now examine the behavior of the two-term outer
ymptotic expansion~36! in a neighborhood defined by Eq
~43! to determine if and when this asymptotic expansion
comes disordered fort!1. On integrating Eqs.~37!–~39!, it
follows that the expansion indeed fails if any or all of th
following conditions hold.

~i! E0
3/2(0)/@Bt(z2zs)

3b/223#5O(1): This condition
can be satisfied if the following conditions~ia! or ~ib! are
satisfied:

~ ia! 0,b,2 and uz2zsu5O~Bt/E0
3/2!2/@3~22b!#

for any t.0;

~ ib! b>2, t i5E0
3/b/B!1, t@t i

in a subregion ofuz2zsu!E0
1/b where condition~i! holds.

~ii ! E0
7/2(0)/@Bat(z2zs)

7b/223#5O(1): The condition
~ii ! can hold if either~iia! or ~iib! holds:

~ iia! 0,b, 6
7 , uz2zsu5O@Bat/E0

7/2~0!#2/~627b!

for any t.0;

~ iib! b> 6
7 , t i i 5E0

3/b/~Ba!!1, t@t i i

in a subregion ofuz2zsu!E0
1/b , where condition~ii ! holds.

~iii ! (z2zs)
b/213/@E0

1/2(0)Bat#5O(1): This condition
holds for anyb.0 when (z2zs)5O@E0

1/2(0)Bat#2/(b16)

!E0
1/b .

Note thatt i i @t i . Further, it is to be noted that the cond
tions t i!1 andt i i !1 for b.2 andb. 6

7 , respectively, nec-
essarily require thatE0(0) be sufficiently small. When
E0(0) is not that small, the regular perturbation expans
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~36! does not break down forb.2 when anisotropya50.
On the other hand, the presence of anisotropy (aÞ0) guar-
antees that there is a local region where the outer pertu
tion expansion does not hold because condition~iii ! neces-
sarily holds sufficiently close toz5zs .

C. Results from inner equations centered atzs„t…

As is well known in perturbation theory, the disorderin
of an assumed asymptotic perturbation expansion in pow
of B, as seen in the preceding section, suggests that
should seek appropriate rescaling of the dependent and i
pendent variables before determining the asymptotic li
B→0. This procedure results in an ‘‘inner’’ equation ne
zs(t).

The arguments leading to the choice of these rescali
as well as the examination of solutions to the leading-or
inner equation, are quite elaborate and are relegated to
pendix A. The results depend very much on the relative
derings ofE0(0), B, anda. In this connection, it is appro
priate to note that ifE0(0) is not independent ofB but scales
as some positive power ofB smaller than 1, then whilez0z

would not contain such a singularity, there would be an
termediate term in the outer-perturbation expansion~22! ~be-
tween 0 and 1! that would contain this particular singularity
Furthermore, if the anisotropya scales with some positive
power ofB, instead of being independent of it, one wou
have to similarly insert another, possibly fractional power
B, into the outerperturbation expansion~22!. Nonetheless,
these changes do not affect the validity of Eq.~36! as the
two-term outer expansion in the neighborhood of a singu
ity. We do not discuss a case whereE0(0) scales with a
power ofB larger than 1 since such weak singularities a
seen to dissipate over a fast time scale, just as for th
discussed below forE05o(Bb/3).

The main result from Appendix A is that an initial singu
larity of the type~10!, which is initially not ‘‘too close’’ ~in
the sense defined precisely in the next section! to the real
axis, transforms into many singularities clustered over
small inner region~actually, it contains multiple inner re
gions! aroundz5zs(t). Yet, except for the case of wea
singularities, there exists an intermediate regime defined
Bd!uz2zs(t)u!1 with z2zs(t) in some complex sector
where Eq.~10! holds for at leastO(1) times, or untilzs(t)
comes ‘‘too close’’ to the real axis. Figure 5 illustrates t
inner regions aroundzs(t) for strongly anisotropic surface
energy. Pictorially similar results hold, though with differe
scalings~see Appendix A! for weakly anisotropic surface
energy. The only exception to the behavior in Eq.~10! over
some range of distances occurs for an initially weak sin
larity, defined by the conditionE0(0)5o(Bb/3). Here scal-
ing arguments reveal that on a fast time scale the singula
will have dissipated so that there will be no trace of its init
nature. Effects of singularities, therefore, will not be visib
on the interface. This result, along with those presented
the next section about weak singularities near the real a
limits the smallest observable length scales and the lar
possible growth rates of distortions at the interface that
be associated with complex singularities of the type~10!.
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III. INNER SCALES FOR SINGULARITIES
NEAR THE REAL AXIS

In this section, we investigate the behavior of singularit
that are ‘‘too close’’ to the real axis for the results in th
preceding section to hold. Here, one cannot simplify the g
bal integral terms likeq1 ,q2 , as well as terms likez̃z , etc. in
Eq. ~21!. Previously, we merely replaced such a term by
Taylor expansion nearz5zs . Now, the proximity ofzs to
the real axis introduces too strong variations in these qu
tities. The condition ‘‘too-close’’ is more precisely define
by requiring that Imzs5O(Bd), whereBd defines the inner
scale appropriate for the case under consideration~it differs
for different B and E0 , as will be shortly seen!. Such a
situation can arise in two different ways:~i! zs(0) is ‘‘too
close’’ to the real axis or~ii ! zs(t), initially further out, is
now ‘‘too close’’ to the real axis, something that must eve
tually happen for allzs(t).

Recall from@1# that for zero surface energy, isolated si
gularities withb. 1

2 do not reach the real axis in finite time
whereas those corresponding to 0,b, 1

4 impinge the real
axis in finite time.~Recall that the case14 <b< 1

2 remains
uncertain and will not be discussed here.! In this section, we
restrict the discussion of surface-energy effects to two s
cases: 0,b, 1

4 and 1
2 ,b<1. The caseb.1 is not con-

sidered here because we expect the influence of such si
larities to be minimal over the time scale of tip advanc
Prior numerical calculations@10# suggest that forb signifi-
cantly larger than 1, the singularity approach towards the
axis is slow compared to poles, withb51.

We will be chiefly concerned with the derivation of con
sistent inner equations, but with less discussion of the res
ing solutions. The main purpose is to derive scaling resu
which shed some light on the spatial and temporal scales
interfacial distortions. Since the singularity location is clo
to the real axis, there is no advantage in using the ana
cally continued lower-half equation~21!. In this case, all the
complicated terms, lumped together in theBr (z,t), become
the same order as the other surface energy terms. It is m

FIG. 5. Schematic of singularity structure in the presence
strongly anisotropic surface energy.~a! Outer singularity zz

;E0(t)@z2zs(t)#2b, ~b! size of inner regionO(B2(11l)1m/b16),
~c! inner singularity~there are actually a countably infinite numb
of inner singularities! zz;C(t)@z2z in(t)#2/3, ~d! size of inner-inner
regionO(B3/4$2@(b12/3)d2m#2l%).



a

it

ial

or

d

ri

e-

is

on.

or

PRE 59 681DENDRITIC CRYSTAL GROWTH FOR . . . . II. . . .
convenient to directly analyze the integro-differential equ
tion ~2! on z5j1 i0.

A. The case1
2 <b<1

As noted previously, forB50, singularities withb. 1
2

asymptote the realj axis ast→`. We know, from the analy-
sis in @1#, that as a1

2 ,b<1 singularity nears the real axis,
tends to j56`, unless ReE050 ~a special nongeneric
case!. For a singularity with1

2 ,b,1, for whichjs→1` as
it nears the real axis,

E0~ t !;C1t1/2, js~ t !;~2I 2t !1/2,
~44!

hs;2C3t21/@2~12b!#, t→`,

whereC1 andC3 are positive constants related to the init
location of the singularity, andI is given by

I 5
1

p E
2`

`

R~j8,t !dj8, ~45!

which is assumed to be a constant, as will be the case f
constant tip velocity~even if the far field is time dependent!.

For the caseb[1, however, the behavior is different, an
is given by

E0~ t !5E0~0!, js;~2It !1/2, ~46!

and for ReE0.0, which necessarily corresponds to singula
ties for whichjs(t)→1` as t→` ~see@1#!,

hs;2C3expF2
2

Re~E0! S t

2I D
1/2G , t→`. ~47!
-

a

-

Similar results hold for ReE0,0, in which casejs(t)
→2` as t→`. There is an important difference, then, b
tween the special caseb51 and other singularities in this
range: The initial singularity strength,E0 , is preserved in the
b51 case, whereas for12 ,b,1, at sufficiently long times,
the order ofE0 is always large. Note that this latter point
complicated by the fact that the exact relation betweenC1
andE0(0) is not known. In what follows, we take

E0~ t !5BmÊ0~ t !, ~48!

wherem>0.
We take2hs(t)5O(Bd), whered is to be determined as

below, and move toward a derivation of the inner equati
For singularities that were initially at anO(1) distance from
the real axis, the results~44! and ~47! imply that, at this
stage,

t5O~B22d~12b!! for 1
2 ,b,1,

~49!
t1/25O„2Bmln~B!… for b[1.

We decompose the mapping locally as

z;z0~ t !1Bm1d~12b!G~x,t !, ~50!

j5js~ t !1Bdx, ~51!

wherejs(t) is the real part of the singularity locationzs(t).
With a view to finding an asymptotic expression f
H„j(x,t),t… for smallB, with x5O(1), wenotice that
H~j,t !2H„js~ t !,t…5
j2js~ t !

p
2E

2`

` dj8R~j8,t !

~j82j!~j82js!

5E
2`

js2e1
1E

js1e1

`

12E
js2e1

js1e1
dj8

j2js~ t !

~j82j!@j82js~ t !#
R0~j8,t !

1E
2`

js2e1
1E

js1e1

`

dj8
j2js~ t !

~j82j!@j82js~ t !#
@R~j8,t !2R0~j8,t !#1

2E
2js2e1

js1e1
dj8

j2js~ t !

~j82j!@j82js~ t !#
@R~j8,t !2R0~j8,t !#, ~52!
whereBd/3!e1!Bm/b andR0 is an outer approximation ofR
valid to within an erroro(B(2b21)d22m) for uj2jsu.e1 ,
with the property that locally nearjs(t),

R0;uE0u22@j2js~ t !#2b. ~53!

Expanding (j82j)21 in powers of (j2js), it is clear
that the first two integrals on the right of Eq.~52! have the
asymptotic behavior, nearj5js ,
E
2`

js2e1
1E

js1e1

`

dj8F j2js~ t !

~j82js!
2 1

@j2js~ t !#2

~j82js!
3 1¯ G

3R0~j8,t !. ~54!

The third integral on the right of Eq.~52! can be rewritten as

2E
js2e1

js1e1
dj8F j2js~ t !

~j82js!
2 1

@j2js~ t !#2

~j82js!~j82js!
2GR0~j8,t !,

~55!
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which, when added to contributions from the first two int
grals on the right of Eq.~52!, written as in Eq.~54!, gives an
asymptotic contribution forb,1,

;Ĥ1~ t !Bdx1o~B2bd2m!, ~56!

where

Ĥ1[
x

p E
2`

` dj8

~j82js!
2 R0~j8,t !. ~57!

In the case ofb51, m50, Eq.~52! has to be modified by an
additional contribution, so we have

H~j,t !2H~js~ t !,t…;Ĥ1~ t !Bdx1Ĥ2~ t !B2dx21o~B2d!,

~58!

where

Ĥ2[
x

p
2E

2`

` dj8

~j82js!
3 R0~j8,t !. ~59!

In general, the last integral in Eq.~52! gives a contribution
B2bd22mH̃, where

H̃~x,t !5
x

p
2E

2`

` dx8

x8~x82x!
@R̃~x8,t !2uÊ0u22ux8u2b#

~60!

and

R̃~x,t !5
12B12m2~22b!dIm Vx

uGx~x,t !u2
, ~61!

Im Vx52E
2`

` dx8

x82x
Kx~x,t !, ~62!

K~x,t !52S 11aF12
1

uGxu4 Re~Gx
4e24iu0!G D

3
1

uGx~x,t !u
ImS Gxx

Gx
D . ~63!

Combining contributions~56!–~60!, we have finally that

H~x,t !;H„xs~ t !,t…1BdxĤ1~ t !1B2dx2Ĥ2~ t !

1B2bd22mH̃~x,t ! ~64!

and Ĥ2(t)[0 for bÞ1.
With this approximation ofH for x5O(1) and the result

R„j~x,t !,t…;B2bd22mR̃~x,t !, ~65!

it follows from substituting Eqs.~50! and ~51! into Eq. ~2!
that in the limitB→0, x5O(1), wehave

Gt5$Ĥ1~ t !x1BdĤ2~ t !x21Bbd2m@H̃~x,t !1 iR̃~x,t !#%Gx

~66!

provided we choose
- j̇s~ t !52H„js~ t !,t…. ~67!

There are two distinct subcases examined below.

1. A not-too-weak singularity: m<b/2

In this subcase, an appropriate choice ford is

d5
~12m!

22b
, ~68!

which makes the surface-energy termO(1) in the expression
for R̃ in Eq. ~61!. Since the inner region scales likeBd

!Bm/b, the outer asymptotic behaviorzz;E0(z2js)
2b de-

termines the matching conditionGx;x2b as x→6`. We
also note that the termBdĤ2(t)x25O(Bbd2m) only when
m[0 andb[1, but is otherwise small and hence neglect
That surface-energy effects cannot occur to the leading o
in O(1) time follows by noticing that if we were to write a
equation for the next order regular perturbation termz1 , then
the equation has a forcingB Imv0j /(z0j* ) that is not large near
j5js(t).

It is convenient to introduce the parameter

D[Bbd2m, ~69!

which is small in this regime. It is clear from Eq.~66! that
the surface-energy effects enter on a long time scale. If

t̃[Dt, ~70!

we expect that

G;G0~x,t, t̃ !1DG1~x,t, t̃ !1¯ , ~71!

which leads to

G0t5~Ĥ1!0G0x . ~72!

Since the integral occurring inĤ1 is in fact 2ḣs /hs , the
solution to Eq.~72! is given by

G05G0„x/hs~ t̄ !, t̃ …[G0~ x̃, t̃ !, ~73!

where

x̃5x/~2hs!. ~74!

For t̃ !1, one gets essentially the zero-surface-energy s
tion, rewritten in the inner variables,

G0~ x̃, t̃ !;
c

12b
~x̃1 i !12b, ~75!

where C1C35Bm(c/12B) for b,1 and E0(0)5cBm for
b51.

It is convenient also to decompose bothR̃ andH̃ obtained
by substitutingGx5G0x̃(2hs) into those expressions an
writing

H̃1 iR̃5hs
2@H̃0~ x̃, t̃ !1 iR̃0~ x̃, t̃ !#

2hs@H́0~ x̃, t̃ !1 iŔ0~ x̃, t̃ !#, ~76!
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where

R̃0~ x̃, t̃ !5
1

uG0x̃~ x̃, t̃ !u2
, ~77!

H̃0~ x̃, t̃ !5
x̃

p
2E dx̃8

x̃8~ x̃82x̃ !
@R̃0~ x̃, t̃ !2c22x̃2b#,

~78!

Ŕ0[2
Im~V0x̃ !

uG0x̃u2
, ~79!

H́05
x̃

p
2E

2`

`

Ŕ0~x8!
dx8

~x82x̃ !x8
. ~80!

Then,G1 obeys

G1t~ x̃,t, t̃ !52hs~ t !@H̃01 iR̃01Ĥ2~ t !x̃2#G0x̃

1~2G0 t̄1@H́01 iŔ0#G0x̃ !. ~81!

We notehs(t) is integrable up tot5`. Also, it can safely be
assumed thatĤ2(t) ~which is an average feature of the in
terface! is bounded in time, so that the integral ofhs(t)Ĥ2(t)
exists all the way tot5`. Thus, the only term that can giv
rise to a secular growth inG ~in this case a linear function o
t! is the last term. We can avoid this secular growth by
quiring thatG0 evolve in slow timet̃ in such a way that tha
the last term vanishes,

G0 t̃5~H́01 iŔ0!G0x̃ . ~82!

It is to be noted from Eqs.~44! and ~68!–~70! that for fixed
b,1, by the time surface-energy effects begin to have
impact @i.e., t5O(1/D)#, the disturbance causes a local i
dentation on the physical interface over an arc-length
tance

O„Bdhs~ t !…12b5O~B1/2t̃ 21/2!. ~83!

This result is not unexpected, since a linear stability analy
of a planar interface suggests that surface energy effects
come significant when the local wavelength isO(B1/2).

For b51, it follows from Eqs.~47! and~68!–~70! that by
the time surface energy becomes important, this pole
have caused a relatively deep indentation on the inter
~see Fig. 6!, for

t̃ 5O„2Bmln@2hs~ t !#…5O~Bm21/2A t̃ !@1, ~84!

with indentation width pE0(0)5O(Bm)@B1/2, since the
conditionm,b/2 translates tom, 1

2 whenb51.
We do not discuss here the details of the borderline c

m5b/2, for which it is clear thatD51, so that there is no
separation of slow and fast time scales. In the next sub
tion, we discuss the case of weak singularities for 1>b
. 1

2 .
We note that while we have not discussed the solution

Eq. ~82!, there is prior work in the context of the Hele-Sha
cell @18,19# that is immediately relevant since Eq.~82! is
precisely the equation of interfacial motion in the case wh
-

n

-

is
e-

ill
ce

se

c-

o

n

there is no fluid suction or injection, i.e., when the interfa
relaxes due to surface energy effects only. It has been ri
ously shown@18# that if the interface is initially close to
circular in a radial geometry, it relaxes to a circle. Howev
numerical evidence@19# suggests that for a sufficiently de
formed interface~as in the shape of a dumbbell!, the inter-
face can pinch-off due to surface-energy effects. Extrapo
ing that result here for this geometry, we expect that fot̄
@1, the interfacial deformation will relax to a planar inte
face unless the deformation is very large, in which case
interface may pinch-off.

2. Weak singularity: m>b/2

This case can arise only if the initial singularity location
so close to the axis that2hs(0)5O(Bm/b). Otherwise, from
analysis of the preceding section, we know that, form
>b/3, the singularity is dissipated over a fast time sca
before it can impact the real axis. So, we consider here o
singularities in this class that are initially very close to t
real axis.

In this case, it is appropriate to choose

d5m/b ~85!

and a fast time scale

t̄ 5B122m/bt. ~86!

Then, from Eq.~66!, it follows that the leading-order evolu
tion equation is now given by

Gt̄5~H́01 iŔ0!Gx , ~87!

where

Ŕ0[2
Im~V0x!

uG0xu2 , ~88!

H́05
x

p
2E

2`

`

Ŕ0~x8!
dx8

~x82x!x8
. ~89!

FIG. 6. Stage when surface energy becomes important at
interface for ab51 singularity.
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The far-field matching condition in this case must reflect
local outer behavior

z0j;A0~ t !1E0~ t !@j2js~ t !2 ihs~ t !#2b. ~90!

We do not solve Eqs.~87!–~89! here, but note that suc
singularities forb,1 correspond to distortions of the phys
cal interface that are localized over an arc length of

O~Bm1d~12b!!5O~Bm/b!.

For b51, the total length of indentation associated with t
approach of theb51 singularity isO(Bm21/2)!1, whereas
the width of the indentation is

Bm!B1/2.

In either case, the smallest length scale associated with
disturbance is much smaller than the capillary length, a
from physical considerations it is expected to dissipate v
quickly @i.e., over at̄ 5O(1) scale#.

We therefore conclude that the weak singularities, i
tially close to the real axis, will be wiped out by surfac
energy effects over a fast time scale, just like similarly we
singularities further out.

How do the results in Sec. III A relate to queries in ite
~ii ! in Sec. I? If singularities of the type12 ,b<1 are too
weak, i.e., m.b/2, then they are dissipated by surfac
energy effects over a fast scale so that the effect of s
singularities of the corresponding zero-surface-energy p
lem are not relevant to interfacial deformations. Earlier
Sec. II C, we stated that weak initial singularities satisfyi
the criteriam.b/3 that are atO(1) distance from the rea
axis are wiped out by surface-energy effects on a fast t
scale before they can make their effects felt on the real a
Thus, only those singularities satisfying the restriction1

2

.b> 1
3 that are initially close to the real axis can possib

influence interfacial deformation only for a short time.
For stronger singularities, i.e.,m,b/2, surface energy

and anisotropy effects act on a much longer time scale t
the time scale of the dendrite tip advance, as implicit in E
~70!. The approach of such zero-surface-energy singular
affects the visible features of the interface, though they
not cause actual interfacial singularities, having failed
reach the real axis in finite time. Since the poles (b51)
approach most rapidly, the interfacial features will be dom
nated by parallel-sided indentations that become deepe
time, until surface-energy effects dissipate them over a l
time scaleBm21/2, over which there is no trace left of th
singular nature (z2zs)

2b of zz . The anisotropy, while im-
portant in the inner-equation dynamics, plays no role in t
scaling.

B. The case 0<b< 1
4

In the absence of surface energy, this class of singular
hits the real axis in finite time and the inner region aroundzs
is now defined when surface-energy effects appear in
leading-order approximation ofR. Here, for the sake of sim
plicity of exposition, we will limit our discussion toE0(0)
5O(1), i.e., m50. Weaker singularities dissipate eve
faster and have an even weaker impact on the interface
e

he
d
y

-

k

-
h

b-

e
is.

n
.
s
o
o

-
in
g

s
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e

We introduce inner space and time variablesx,t in accor-
dance with

j5js~ t !1Bdx, ~91!

t5tc1B223dt, ~92!

where tc is the singularity impact time forB[0. We also
introduce an inner dependent variable,

z~j,t !5z0~ t !1B12dG~x,t!, ~93!

where

d5
1

2~12b!
. ~94!

We notice that with this use of rescaled variables,

Im~vz!~j,t !5B21 Im~Vx!~x,t!, ~95!

where ImVx is defined below in Eq.~102!. Thus, with the
choice ofd in Eq. ~94!, the surface-energy termB Im vj in
Eq. ~3! is O(1). Thechoice of scale factorsB223d andB12d

in Eqs. ~91! and ~93! reflects the need to include surfac
energy modifications in the leading-order inner equation a
to matchGx to the outer solution, whose local behavior
the matching region is given by

z0j;E0~ t !~j2js2 ihs!
2b for Bd!uj2js~ t !u!E0

1/b .
~96!

In order to obtain the leading-order inner equation, it
convenient to rewriteH(j,t) in the form ~52!. Substituting
Eqs.~91!, ~92!, and~93! into Eqs.~2!, ~3!, ~5!–~8!, and~52!,
one finds in the limitB→0 the evolution equations

ż0~ t !50, ~97!

j̇s~ t !52H„js~ t !,t…, ~98!

Gt5~H11 iR!Gx , ~99!

where

H1~x,t!5
x

p
2E

2`

` dx8R~x8,t!

x8~x82x!
, ~100!

R~x,t!5
12Im~Vx!

uGxu2 , ~101!

Im~Vx!52
1

p
2E

2`

` dx8

x82x H ]K

]x
~x,t!J , ~102!

K~x,t!5@11a f ~x,t!#k~x,t!, ~103!

f ~x,t!512
1

uGxu4
Re~Gx

4e2 i4u0!, ~104!

k~x,t!52
1

uGxu
ImS Gxx

Gx
D . ~105!
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Except for the differences betweenH1 andH, the integro-
differential equation~99! is of the form~2! with scaled vari-
ablesx andt replacingj and t, B being renormalized to 1
The anisotropya remains a parameter in the equations.
deed, the inner equations are the same for anyO(1) anisot-
ropy, since on the real axis,f 512a cos 4(u2u0) is always
O(1).

We also need the matching conditions to earlier timet
→2`) and to the outer solution (x→`). The outer and
earlier-time solutions on the real axis are given by Eq.~96!.
Since

hs;2c2Bd~2t!1/124b, ~106!

E0~ t !;a1B12~22b!d~2t!2b/124b as t→2`,
~107!

where the expressions forhs andE0 are obtained from@1#,
the matching conditions become

Gx;c1~2t!2b/124b@x1 ic2~2t!1/124b#2b

as x→` or t→2`. ~108!

We do not know much about the solution to Eq.~99!.
However, a few things can be deduced simply from the s
ing in Eq.~93! and the earlier-time matching condition~108!.
It is clear that the disturbance associated with this singula
is localized in the physical domain to an arc-length dista
of O„E0(0)B(122b)/@2(12b)#(2t)2b/(124b)

…!B1/2 for t
5O(1). It is known from a local linearized stability analys
that disturbances associated with local wave numbers m
larger thanB21/2 quickly dissipate. Thus, it is to be expecte
that the solutionsG to Eq. ~99! will tend to zero over a fas
time scalet; perhaps even before2t50, beyond which the
matching condition ~108! cannot hold. Thus, beyon
O(B1/@2(12b)#), after impact timetc , one can expect suc
singularity effects to be absent in the interfacial indentatio

A sketch~Fig. 7! illustrates the localization and indenta
tion caused by such a singularity before it dissipates,
dressing issue~iii ! in Sec. I.

C. Implications of scaling results for indentation dimensions

Having discussed how surface energy affects singular
close to the real axis, we highlight here a few implicatio
for spatial and temporal scales of indentations on the ph
cal interface. As before, we definem in accordance to the
relationE05O(Bm). The subsections III C 1 and III C 2 ad
dress issue~iv! in Sec. I.

1. Stationarity of indentation in the lab frame

First, we show that an indentation corresponding to
approach of ab.0 complex singularity is stationary in th
laboratory frame on theO(1) time scale over which the tip
advances. Stationary indentations are well known in exp
ment @20#. However, we are unaware of any analytical de
vation of this property for the fully nonlinear problem
though it is a remarkably simple consequence of our form
lation ~2!.

Our results in the preceding subsection suggest that a
turbance associated with a complex singularity atzs5js(t)
-

l-

ty
e

ch

s.

d-

s
s
i-

e

i-
-

-

is-

1ihs(t) with uhs(t)u sufficiently small corresponds to a dis
turbance centered at a physical pointz5z„js(t),t…, where
js(t)52H„js(t),t…. However, from Eq.~2!, it is clear that

d

dt
z„js~ t !,t…5

i @12B Im vj„js~ t !,t…#

uzj„js~ t !,t…u
. ~109!

For each of the cases dealt with in the preceding subsec
it is clear that for singularities that do not dissipate quick
the right-hand side of Eq.~109! is O(Bbd2m)!1. Thus as
B→0, we obtain the asymptotic result that the correspond
z„js(t),t… is stationary, but only on anO(1) time scale—the
time scale of tip motion.

There is a longer time scale, identified here
O(B(m2bd)), over which the geometric nature of the inde
tation also changes. We also note that without thei factor,
the right-hand side of Eq.~109! is simply the normal velocity
of the interface at a point corresponding tojs(t). Over the
longer time scale this indentation can advance alongy, i.e.,
along the tip-advance direction.

2. Growth of disturbances

It is possible to comment on the nonlinear growth of t
disturbances as a function ofuyu, uyu being the axial distance
from the dendrite tip, provided we assume that the dend
tip is moving at a constant speed. There is no assump
that the background state is globally steady, as assume
previous calculations@7,21#. It is clear that at dependence on
the growth of a disturbance translates into a similaruyu de-
pendence, sinceuyu5It for a dendrite tip moving uniformly.
In @1#, we quoted the result that the localized disturban
associated with the approach of a conformal-mapping sin
larity grows in a most pronounced way forb51 ~simple
pole!, causingzz , associated with this singularity, to grow
exponentially like

FIG. 7. Stage when surface energy becomes important at
interface for a singularity with 0,b,1/4.
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expF 1

Re E0
S 2uyu

I 2 D 1/2G for b51 ~110!

if Re E0Þ0 and for

P21@uy/I u@max$1,~ Im E0 /Re E0!2%,

where it is assumedP21@(Im E0 /ReE0)
2. Relation ~110!

implies that the depth of the indentation grows
O(E0 /ReE0A2y/I 2), while its width remains constant a
puE0u. When ReE0 is small relative to ImE0 and

S Im E0

Re E0
D 2

@
y

I
@UIm E0

Re E0
U,

thenzz associated with the pole grows as

expS uyu
I Im E0

D . ~111!

Ultimately, for large enoughuyu, Eq. ~110! becomes valid
unless ReE050 ~a nongeneric case!. However, the zero-
surface-energy dynamics places no restriction on how sm
ReE0 can be. We now explore how surface energy does p
a restriction. There are two subcases, depending on whe
or not the pole that causes the indentation is initially close
the real axis.

a. Poles initially close to the real axis.We learned in
Sec. III A that if poles initially located close to the real ax
are sufficiently weak, in the sense thatm. 1

2 , then their ef-
fects on the interface far from the tip will not be observ
since they will be quickly dissipated by surface-energy
fects. This leaves us with the restrictionm, 1

2 . Now, there
are two possible cases to examine:~a! ReE05O(uE0u)
5O(Bm) and ~b! ReE0 /Im E05O(Bâ) for â.0.

(i) Growth rate for Re E05O(E0)5O(Bm). In this case,
it is clear that requiringm, 1

2 places an effective restric
tion: ReE0@B1/2, implying from Eq. ~110! that the com-
plex singularity causes the associated localized deviatio
zj ~from the background state! to grow no faster than

exp~k1B21/2Auyu/I 2! ~112!

for 1!uy/I u!P21 and uy/I u!B2112m ~so that surface-
energy effects have not wiped out any remnant of this s
gularity!. In Eq. ~112!, the constantk1 is independent ofB.
The corresponding indentation depth~see Fig. 8! grows al-
gebraically as

Auyu/I 2 ~113!

while the indentation width has a lower limitO(B1/2). It is to
be noted that asm becomes progressively closer to the low
limit 1

2, the upper bound~112! is closer to being attained
however, the range ofuyu for which the growth result~112!
holds is restricted sinceB2112m→1 in that limit.

(ii) Growth rate for Re E0 /Im E05O(Bâ)!1, with
E05O(Bm). In this case,uyu@B22â before the result~110!
can apply. However, surface-energy effects become sig
cant for t5uyu/U5O(B2112m), with m, 1

2 , and will dissi-
pate the pole indentation only over this long time scale.
ll
se
er

o

-

of

-

r

fi-

,

for the results on growth rate to be relevant, it is necess
thatB22â!uyu!B2112m. Thus, we need

â,2m1 1
2 . ~114!

Equation~110! implies thatzj associated with the pole lo
cally grows as

exp~k1B2m2âdAuyu/I 2!. ~115!

Given the restriction~114!, it follows that the above is again
limited by Eq.~112!, with corresponding indentation depth

B2âAy/I 2 ~116!

and width O(Bm)@B1/2. In the intermediate case, whe
B2â!uy/I u!B22â, it follows that zz associated with the
complex singularity grows like

exp~k1B2muy/I u! ~117!

and this is sharply bounded by an expression of the type

exp~k1B21/2uy/I u!. ~118!

The corresponding indentation depth in this regime scale

uy/I u. ~119!

Notice, however, that for the largest growth ratem→ 1
2

2 and
henceâ→0—in that case, there is a shrinkage in the int
mediate range ofuyu for which the above growth applies
Thus, in all cases, Eqs.~112! and ~113! accurately describe
the largest possible growth.

b. Poles initially far from the real axis.We discussed in
Sec. II C that singularities that are not too close to the r
axis, but so weak thatm.b/3, dissipate on a fast time scal
Therefore, the effect of such singularities will not be o
served in interfacial indentation. Therefore, we have a cu
m,b/3, which for poles means that

m, 1
3 . ~120!

FIG. 8. Interfacial growth for a pole singularity with ReE0

5O(E0)5O(Bm).
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With this cutoff, it follows that if ReE05O(uE0u), then the
growth rates of the associated localized deviation ofzz from
the background state will be bounded by

exp~k1B21/3Ay/I 2!. ~121!

The indentation width, however, still scales with

Ay/I 2 ~122!

and its width scales asO(B1/3)@B1/2. On the other hand, if
ReE05O(BâE0), then the previous analysis still hold
yielding results~112! and~113!. Note that anisotropy, while
important in the inner-equation dynamics, does not play
role in the scaling above.

We conclude by observing that surface-energy effects
effective restrictions on the growth rates of disturbances
sociated with the complex singularities considered here.
have thus addressed the issues raised in point~iv! of Sec. I.

3. Coarsening due to an ensemble of poles

In @1#, we described a scenario for coarsening in terms
the approach of poles of differing strengths. However, in t
B[0 analysis, there was no mechanism for scale selec
We extend that scenario here by considering surface-en
effects.

From the above results for a specific singularity, we co
alternately pose the following situation: Suppose there is
initial distribution of many poles, with varying strengths, sa
isfying ReE05O(E0). ~Note, if ReE0 is relatively too small
compared to ImE0, the resulting interface distortion is mor
in the form of tip-splitting than side-branching.! Suppose we
examine large distancesuyu from the tip, but with uy/I u
!P21, so that we are in region I, anduy/I u!B21, so that
surface energy has not dissipated poles for whichE0 is
strictly order 1. We can ask the following question: What
the value ofE0 that contributes most to the indentation se
at that location? Since surface energy acts over a time s
B2112m, it follows that the value ofm that contributes maxi-
mally is determined by the relation

B122mmuy/I u5O~1!. ~123!

Values form,mm correspond to larger ReE0 in the relation
~110! and therefore have smaller growth rates. Poles co
sponding to values ofm.mm , but within the rangem, 1

2 ,
will have dissipated before reachingy ~corresponding tot
5uyu/I ). Solving for mm in Eq. ~123! and using Em
5O(Bmm), we obtain

Em5kB1/2Ay/I ~124!

for some constantk. Therefore, the indentation widthpuEmu
associated with such poles isO(B1/2Ay/I ). This can be
viewed as a coarsening characteristic. TheAuyu dependence
of coarsening, found here, differs from the theoreticaluyu1/3

rate found by Voorhees and Glicksman@22# from very gen-
eral considerations of a mean-field theory. However, th
need not be any contradiction since the results quoted
are valid for the intermediate range 1!uy/I u!B21, before
surface energy has had a chance to fully affect indentat
of O(1) widths. It is interesting to note that, in the expe
y

ut
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ns

ments cited in the same reference, the kinetic coarsen
exponents vary between14 and 1

2, though the authors expres
doubt about whether ‘‘asymptotic’’ coarsening conditio
were met in these experiments.

IV. PERTURBATION NEAR A ZERO NOT CLOSE
TO THE REAL AXIS

First, we note that general initial conditions, includin
those containing poles only, contain zeros ofzz , wherez is
otherwise analytic. In this section, we restrict discussion
an initial simple zero, whose initial distance from the re
axis is much greater thanB2/7. For zeros that are closer, se
Sec. V C.

A. Regular perturbation expansion and nonuniformities

We now examine how an assumed regular perturba
for zz in the form ~22! becomes disordered near a zero az
5z0(t). The procedure followed here is similar to that d
scribed in Sec. II, except that we replace powers of@z
2zs(t)# by @z2z0(t)#. In the neighborhood of a zero,

z0z;z0zz„z0~ t !,t…@z2z0~ t !#, ~125!

where the speed of a zero is given by

ż052q1„z0~ t !,t…2
q2z

~z0~ t !,t…

z0zz„z0~ t !,t…
. ~126!

It is found in a sufficiently close neighborhood ofz0(t) that
a particular solution toz1 satisfying Eq.~32! has the local
asymptotic behavior

z1z
;A0~ t !@z2z0~ t !#25/21aF0~ t !@z2z0~ t !#29/2

~127!

for t.0, where

A0~ t !52
3

2i

z0zz
1/2

„z0~ t !,t…

z̃0z
3/2
„z0~ t !,t)q2z

„z0~ t !,t…
, ~128!

F0~ t !5
7

4i
ei4u0

z̃0z
1/2
„z0~ t !,t…

z0zz
3/2

„z0~ t !,t…q2z
„z0~ t !,t…

. ~129!

However, the behavior~127! is not uniformly valid as
t→01 since for initial conditions independent ofB,
z1(z,0)50 is required. In order to correct Eq.~127! so that it
is uniformly valid for small t as well, we notice that the
associated homogeneous equation forz1 from Eq. ~32! has a
solutionzH with local singular behavior

zHz
;A1~ t !@z2zd~ t !#25/21aF1~ t !@z2zd~ t !#29/2

~130!

nearz5zd(t), where

żd~ t !52q1„zd~ t !,t…, ~131!

A1~ t !5A1~0!expS 2 3
2 E

0

t

dt8q1z
„zd~ t8!,t8…D , ~132!
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F1~ t !5F1~0!expS 2 7
2 E

0

t

dt8q1z
„zd~ t8!,t8…D . ~133!

By choosing

zd~0!5z0~0!, A1~0!52A0~0!, F1~0!52F0~0!,

~134!

the sum of the local expressions~127! and ~130! tends to
zero ast→0 for fixed z2z0Þ0, as required. Thus, a un
formly valid expression int for the local singular behavio
nearz5z0(t) is

z1z
;A0~ t !@z2z0~ t !#25/21aF0~ t !@z2z0~ t !#29/2

1A1~ t !@z2zd~ t !#25/21aF1~ t !@z2zd~ t !#29/2.

~135!

For t not too small, it is clear that Eq.~127! still describes the
local asymptotic behavior. However, the introduction of
new singular point atz5zd(t) in Eq. ~135!, which moves
with speed~131!, different from the speed of the zero locate
at z5z0(t) @see Eq.~126!#, ensures that these two poin
separate from each other with time.

This appearance of a new singularity means that the re
lar perturbation expansionz0z

1Bz1z
1¯ breaks down at a

point zd(t), where its local behavior fort not too small is
described by

zz;z0z
„zd~ t !,t…1BA1~ t !@z2zd~ t !#25/2

1BaF1~ t !@z2zd~ t !#29/2. ~136!

Note that the zero-surface-energy solutionz0z
is neither sin-

gular nor zero atz5zd(t) for t.0. This new singularity we
name, as elsewhere~cf. @2,11#!, a ‘‘daughter singularity,’’
since it is ‘‘born’’ out of the initial zeroz0(0) at t501

through surface-energy effects. Note that this daughter
gularity, at z5zd , moves like any other singularity of th
B50 problem, and therefore necessarily approaches the
axis, unlike its parent,z0(t), which may or may not. We
emphasize that a daughter singularity corresponding to e
initial zero is not a singularity ofzz or evenz0z , but only of
z1 ,z2 ,... of the outer asymptotic expansion~22!, which is
itself invalid atz5zd .

At very early times, there is no distinction between t
inner region of the daughter and that of the zeroz0(t) of z0z

.
As we will see in what follows, similar to the isotropic Hele
Shaw flow, the solution to the inner equation contains ma
actual singularities ofzz . Thus,zd(t) defines the center of a
~daughter! singularity cluster, until the time whenzd(t) im-
pacts the real axis. Beyond that time, all the actual singul
ties within such a cluster disperse. The concept of a daug
singularity cluster ceases to be meaningful beyond the
pact time.

An examination of the equation forz2 ~and z3 ,...) indi-
cates that there are no further points aside fromzs , z0(t),
andzd(t), where the regular perturbation expansion in po
ers ofB becomes disordered, a situation similar to what h
been found in the isotropic Hele-Shaw setting@2#. We con-
clude this section by noting that in the perturbation exp
u-

n-

al

ch

y

i-
ter
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-
s

-

sion leading to the local expression~136!, we assumeda to
be independent ofB. However, that is clearly not necessa
for the validity of Eq.~136!. Even if a scales as some pos
tive power ofB, the local behavior of the outer perturbatio
expansion is still determined by Eq.~136!, even though the
ansatz~22! needs to be modified to account for a possib
fractional power ofB.

B. Inner equations around z0„t… and zd„t…

Near eachz0(t) andzd(t), we noted already that the as
sumed asymptotic expansion in powers ofB becomes in-
valid, suggesting the need for inner expansions centere
z0(t) and zd(t). The arguments for finding the necessa
rescalings in the inner equations are very involved and
pend not only on the anisotropy, but also generally on tim
Since the dynamics of the inner scale does not directly af
the interface shape when daughter singularities and zero
not close to the real axis, we have relegated this set of a
ments to Appendix B. What emerges from these scaling
guments is summarized in Fig. 9 for a weakly anisotro
case@a similar picture holds for a strongly anisotropic ca
~see Appendix B!, though with different scalings#—a zero
spawns a ‘‘daughter singularity,’’ with both the zeroz0(t)
and the daughterzd(t) defining generally separate inner r
gions that contain clusters of actual singularities ofzz . For t
sufficiently small, these two inner regions are initially part
one inner region aroundz0(t) when zd(t) is sufficiently
close toz0(0). Since the daughter singularity atz5zd(t)
necessarily moves towards the real domain, its effect m
eventually be felt at the interface, though other singularit
can significantly shield its impact overO(1) time ~see@11#!.
The zeroz0(t) is not actually a zero ofzz , when surface
tension is included; however, it remains a zero in the se
that there is an intermediate scale—1@uz2z0(t)u@B2/7 in
some complex sector, where Eq.~12! is still valid—i.e., it
remains a zero in the outer-asymptotic sense asB→0. It is in
this sense that we continue to refer toz0(t) as a zero.

FIG. 9. Weakly anisotropic zero with emerging daughter sing
larity. ~a! Outer daughter singularity zz;z0z1BA1(t)@z
2zd(t)#25/2, ~b! size of daughter singularity’s inner regio
O(B1/3), ~c! inner singularity ~countably infinite in number! zz

;C(t)@z2z in(t)#24/3, ~d! outer zerozz;z0zz@z2z0(t)#, ~e! size
of zero singularity’s inner regionO(B2/7).
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The inner region aroundz0(t), on the other hand, play
no role in the interfacial dynamics unlessz0(t) comes close
to the real axis, which, unlikezd(t), may happen for certain
classes of initial conditions. However, it is possible that
zero-surface-energy motion of az0(t) towards the real axis
is thwarted by a daughter singularity impact on the real a
which modifies the shape of the interface@and henceq1 and
q2z

in Eq. ~126!#. This indeed happens for certain initia
conditions, as exemplified in@11# and Appendix C.

In the following section, we discuss scalings for the inn
equations, when a daughter singularityzd(t) or a zeroz0(t)
is so close to the real axis that the results of this section
no longer valid.

V. INNER EQUATIONS FOR DAUGHTER
SINGULARITIES OR ZERO

CLOSE TO REAL AXIS

As in Appendix B, it is convenient to definel so that

a5Bl, ~137!

where l>0. The localized equations of the form~B4! ~in
Appendix B! do not remain valid for strong anisotropy (l
, 1

2 ) when a daughter singularity comes withinO(B2(11l)/9)
of the real axis, andO(B1/3) for weak anisotropy (l. 1

2 )
because it is no longer possible to replace global quant
such asq1 , q2 and z̃z by their leading-order Taylor expan
sions atz5zd .

As for singularities, surface-energy effects enter into
global integral terms at the leading order and thus define
inner scales. However, the appropriate scales depend on
is inherited from the earlier stage and are therefore differ
for the cases of weak and strong anisotropy.

However, in each case, we will see that at first t
surface-energy effects within the inner region are not imp
tant to the leading order over the fast time scale induced
the nearness of a daughter singularity cluster close to the
axis. During this zero-surface-energy phase of evolution,
inner singularities within the daughter singularity’s inner r
gion advect toward the real axis, causing the daughter sin
larity’s inner region to get closer to the real axis, at the sa
time continually spreading along the real axis. This eff
leads to a break-up of the daughter singularity cluster i
subclusters. Finally, surface energy becomes important a
leading order when these subclusters come within anO(B1/2)
distance of the real axis. The resulting scaled inner equa
is found to be the same as the original equation forB51, a
problem that has been studied numerically and will be
ported in paper III of this paper sequence. Such a renorm
ization in the dynamics allows us to understand the effect
the daughter singularity cluster in selecting locally stea
dendritic characteristics.

A. Weakly anisotropic case: l> 1
2

We try to find inner variables around a pointjd that ini-
tially coincides with Rezd . While the concept of daughte
singularity zd does not makes sense beyondt5td , when
Im zd(td)50, jd(t) will be defined beyond this time by evolv
ing it in accordance with
e

is

r

re

es

e
w
hat
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j̇d~ t !52H„jd~ t !,t…. ~138!

From the results in Appendix B 1 A, it is clear that
suitable choice of inner spatial variable when2Im zd
52hd5O(B1/3) is

x5B21/3@j2jd~ td!#. ~139!

Since, the outer matching condition isz0j„jd(t),t…, which is
O(1), it follows that the dependent variable should be d
fined through

z~j,t !5z0~ td!1B1/3G~x,t!. ~140!

Going back to Eq.~2!, it is easily seen that this evolutio
must occur over a fast time scale, given by

t5B21/3~ t2td!. ~141!

Substituting these inner scales into Eq.~2!, we find that the
leading-order inner equation at this stage is

Gt5Q1Gx1Q2 , ~142!

with matching condition

Gx~x,t!;z0z„zd~ td!,td… as x→6`, ~143!

where

Q1~x,t!5
1

p
2E

2`

` dx8

x82x

1

uGx~x8,t!u2
, ~144!

Q2~x,t!5
i

Gx* ~x,t!
. ~145!

These inner equations are the local equivalent of the z
surface-energy equation that was studied in@1#, when exam-
ined on the real axis, so surface-energy effects have di
peared from the leading order. We know that Eq.~142!,
when studied in the realx domain, is ill-posed, but is well-
posed in the extended domain that includes the lower-hax
plane. Therefore, prediction on the dynamics of Eq.~142!
must necessarily involve information on the initial conditio
in the lower-half complexx plane; i.e., we need to know th
details of the inner solution around a daughter singula
before it strikes the real axis. This information is not read
available to us, since the inner equations in Appendix B h
yet to be solved.

Nonetheless, a few conclusions can easily be drawn.
know for instance that a daughter singularity cluster conta
many weak singularities, each of which appears to be a24

3

singularity of zz ~see@2,11# for related Hele-Shaw results!,
except on an inner-inner scale. A2 4

3 singularity of the zero-
surface-energy problem is known to asymptote the real a
Further, it approachesx56` like 6t1/2, as it approaches
the real axis liket21/2.

Thus, the daughter singularity cluster spreads out alonj
axis with time as

uj in2jdu;B1/6~ t2td!1/2 for 1@t2td@B1/3. ~146!
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The correspondingh width of this cluster, defined by the
maximum distance to the real axis of individual singularit
within this cluster, shrinks like

uh inu;B1/2~ t2td!21/2 for 1@t2td@B1/3. ~147!

The daughter singularity cluster flattens against the real a
and whent2td5O(1), theflattened inner region has widt
B1/6 and thicknessB1/2; at this stage surface energy becom
important.

We now consider the evolution of a cluster of singula
ties atz5z in , moving along the realz axis after the daughte
singularity’s inner region has flattened. We examine an in
region aboutj in ~sincejd no longer makes sense!. We also
require surface energy effects to be important at the lead
order. The appropriate inner variables are

x5B21/2@j2j in~ t !#, ~148!

t5B21/2~ t2t in!, ~149!

z~j,t !;z0~ t !1B1/2G~x,t!, ~150!

where

j̇ in52H„j in~ t !,t… ~151!

and t in defines a time whenh in5O(B1/2). The inner equa-
tions are

Gt5~H1 iR!Gx ~152!

with

H~x,t!52H$R%~x,t!, ~153!

R~x,t!5
12Im~Vx!

uGxu2 , ~154!

Im~Vx!5HH ]K

]x J ~x,t!, ~155!

K~x,t!5@11a f ~x,t!#k~x,t!, ~156!

f ~x,t!512
1

uGxu4
Re~Gx

4e2 i4u0!, ~157!

k~x,t!52
1

uGxu
ImS Gxx

Gx
D . ~158!

The far-field matching condition becomes

Gx~x,t!;z0z„z in~ t in!,t in… as x→`. ~159!

Thus, the evolution of a neighborhood of the interface, wh
complex singularities associated with a daughter singula
cluster approach, is governed by the ‘‘standard problem,’
defined in Sec. I.

Since each cluster is governed by the standard prob
the entireO(B1/6) region adjacent to the daughter impa
point is governed by the standard problem withB51. Espe-
cially important is the impact with the origin of the daught
singularity related to the Ivantsov zero, insuring that t
is,

s

r

g

e
ty
s

m,

e

crystal tip is governed by the standard problem, even tho
the zero-surface-energy solution by itself does not indic
~through theB50 interfacial curvature! that surface-energy
effects become important at the tip.

B. Strongly anisotropic case: l< 1
2

Since in this case the outermost scale around a daug
singularity is known to be proportional toO(B(2/9)(11l)) just
before the daughter singularity impacts the real axis, we
pect that the appropriate scale here is

x5B2~2/9!~11l!@j2jd~ td!#, ~160!

z~j,t !;z0~ td!1B~2/9!~11l!G~x,t!. ~161!

Substituting into Eq.~2!, it is clear that the evolution at this
stage proceeds on a fast time scale

t5B2~2/9!~11l!~ t2td!, ~162!

z~j,t !;z0~ td!1B~2/9!~11l!G~x,t!. ~163!

We find that the inner equations are the same as the z
surface-energy equations~142! and~144!, though with some-
what different definitions ofG, x, andt.

Since the leading-order equation is just the equation
zero-surface-energy dynamics, it follows from results in@1#
that individual singularities within the daughter singulari
cluster approach the real axis over the time sc
O(B(2/9)(11l)). Once individual singularities are within
smaller@O(B1/2)# distance of the realz axis, by which time
the daughter singularity cluster will have dispersed sign
cantly, the inner equation is once again given by the stand
problem, as defined by Eqs.~152!–~158! above. Computa-
tions to be reported in paper III of this paper sequence s
gest that the asymptotic long-time state for the stand
problem is independent of the far-field and/or initial cond
tion. This result is significant because it suggests that
‘‘standard problem,’’ as it arises in differing contexts, with
dissimilar initial and far-field matching condition, has
‘‘standard’’ long-time behavior for all cases.

C. Inner equations for zeros near the real axis

In this section, we investigate the behavior of a zero t
is too close to the real axis for the analysis of Sec. IV to
valid. This can happen either because~i! z0(0) was initially
very close to the real axis or~ii ! z0(t) came close to the rea
axis later in time. The arguments below do not distingu
between the two cases. It is to be noted that evidence
cussed in the next subsection indicates that the scenario~ii !
is not possible.

We begin with the equations written on the real axis@~2!–
~8!# and use the inner variables

x5B21/3@j2j0~ tc!#, ~164!

t5B21~ t2tc!, ~165!

z~j,t !;z0~ t !1B2/3G~x,t!, ~166!

Im~vz!~j,t !5B21 Im~Vx!~x,t!, ~167!
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where tc50 for case~i! and equals the time when Imz0(t)
50 in case~ii !. Then to the leading order asB→0, with
x5O(1), weobtain

ż0~ t !50. ~168!

The evolution ofG(x,t) is seen to be governed by Eq
~152!–~158!, i.e., the standard problem. Note, however, th
the definitions ofx and t differ from those previously de
fined. We also note that the inner equations are indepen
of the relative ordering of anisotropya and surface energyB,
sincef cannot be large.

The initial-/far-field matching condition in our case is

Gx;c1~x1c2!. ~169!

Therefore, the evolution in the inner region around the tip
an initial near-cusp with small surface energy is exactly
same as the evolution of an initial parabola withB51. In
paper III of this paper sequence, we solve the dendrite p
lem numerically using a boundary-integral approach, ba
on Eq.~2!, for B5O(1). By doing so, we will also find the
fate of an interface that is initially a near-cusp. The scal
introduced here then determines an evolution time scale
B→0.

D. Which one reaches the real axis first—the daughter
singularity or the zero?

Given the dramatic effect of daughter singularities on
real-axis dynamics~i.e., interface shape!, a relevant question
is whether a daughter singularityzd(t) necessarily strikes the
real axis before its corresponding precursor zeroz0(t), with
which it initially coincided. This is an important question fo
the following reason: Recall from the zero-surface-ene
dynamics that a zeroz0(t), if and when it approaches th
real axis, causes an initially smooth interface to form a cu
Surface energy is expected to prevent cusp formation; h
ever, if indeed az0(t) approaches the real axis, one wou
expect that asB→0, a near-cusp forms. On the other hand
zd(t) always approaches the real axis before the corresp
ing z0(t), then the interface can never come close to cus
shape. This issue appeared in the mathematically analo
isotropic Hele-Shaw problem before and will also be de
onstrated for the anisotropic case in paper III—the impac
a daughter singularity causes the interface to veer off fr
the corresponding zero-surface-energy solution even w
the interface is smooth and far from forming a cusp. As
shape changes, so does the motion ofz0(t) and numerical
evidence shows that this change is enough to preventz0(t)
from ever coming close to the real axis. Thus, if the answ
to the question posed above is in the affirmative, then
cusp-forming solution found in@1# has no physical signifi-
cance; the actual physical interface will have veered off fr
the idealized solution much before the solution comes cl
to forming a narrow structure. In Appendix C, we prese
some evidence~both analytical and numerical! based on cer-
tain classes of initial conditions~poles!, to support our con-
tention that daughter singularities always arrive at the r
axis prior to their corresponding zeros. It is to be noted t
in this respect, there appears to be a difference betwe
Hele-Shaw interface driven by suction at a finite point@26#
t
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and one for which the sink is at infinity@11#. Analogy with
the dendrite as far as daughter singularity impact preced
the zero appears to hold only in the latter case.

VI. NONLINEAR LOCALIZED INTERFACIAL
DISTURBANCES

Given our observations that daughter singularity impac
to be expected for a generic initial condition, and that t
impact causes active features of a dendrite to be formed
appropriate orientation of minimal surface energy directio
we inquire into the evolution of a disturbance that is initia
localized, but causes a strictlyO(1) change inzz . While the
importance of studying this particular kind of disturban
can be understood better in terms of the expected daug
singularity impacts, there is no necessity of relating su
localized disturbances to any necessary singularity in
complex plane. The fate of such disturbances follows mer
from the assumed scalings of the disturbance on the real
and the findings of paper III on the limiting dynamics on t
inner scale.

We introduce, as before, the local scaled variable

x5~z2js!/e, ~170!

wheree is a measure of the localization of the disturban
Whenx5O(1), it is appropriate to introduce the local var
ableG(x,t) through

z„z~x,t !,t…5z0„js~ t !,t…1eG~x,t !. ~171!

This scaling ensures that forx5O(1), the deviation ofzz

from z0z is O(1). We also note that localized disturbance
whereuzzu@1 can also be accommodated in the inner eq
tion obtained forG since none of the assumptions made
deriving the equation forG is violated whenuGxu@1 in
some localized neighborhood in thex domain. We note that
any localized disturbance in thez plane for whichuzzu@1
must have an outer-inner region for which the scaling~171!
is appropriate, as otherwise it is not possible to match w
an O(1)z0z . We note that the requirement that the wa
packet be spatially concentrated aroundz5js(t) implies that
an appropriate boundary condition onG as uxu→` is given
by

Gx→z0z„zs~ t !,t…, ~172!

which is a constant. A comment is in order about the init
hypothesis that there is noe-scale variation ofz0(z,t). As
shall be seen in the derivation of the equations, this can
relaxed by just assuming that there is no small-scale va
tion of z0z within ane neighborhood ofzs(t). This allows us
to include in this formalism multiple wave packets that a
localized on different parts of the interface. WithG as given
by Eq. ~171!, it is easily seen that
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B Im~vz!~js1ex,t !;
B
e2 Im~Vx!5

Be22

p
2E

2`

` dx8

x82x

]

]x8 F 1

uGx8u
Im

Gx8x8
Gx8

G . ~173!

It is also clear that

R~js1ex,t !5R~x,t !5
12Be22Im~Vx8!

uGx8u
2 . ~174!

Now consider the asymptotics ofH(z,t) for x5O(1) in the limit e→0. The integral forH can be broken up into

H„z~x,t !,t…5Hout~x,t !1H in~x,t !, ~175!

where

Hout~x,t !5F E
2`

js~ t !2d
1E

js~ t !1d

` G dj

j2js2ex
R~j,t !, ~176!

H in~x,t !52E
2d/e

d/e dx8

x82x
R~x8,t !. ~177!

In the above,d is a constant conveniently chosen with the restrictione!d!1. The end result of the asymptotic analysis w
yield answers completely independent ofd. Since,R(j,t);R0(j,t) outside ane neighborhood ofjs , it follows that

Hout~x,t !;
1

p F E
2`

js2d
1E

js1d

` H 1

j2js~ t !
1

ex

@j2js~ t !#2J R0~j,t !djG1OS e2

d2D , ~178!

which can be written as

Hout~x,t !;H0~ t !1eH1~ t !x1
ex

pd
@R0~js2d,t !1R0~js1d,t !#

2
1

p
2E

2d/e

d/e dx8

x8
@R0~js1ex8,t !1exRj

0~js1ex8,t !#1O~e2d22!, ~179!

where

H0~ t !5
1

p
2E

2`

` dj

j2js
R0~j,t !, ~180!

H1~ t !5
1

p
2E

2`

` dj

j2js
Rj

0~j,t !. ~181!

Further simplification of the asymptotic series~179! is possible, giving

Hout~x,t !;H0~ t !1eH1~ t !x1
2exR0~js ,t !

pd
2

2

p
dRj

0~js ,t !1O~e2d22,ed!. ~182!

Now, we examine the asymptotic behavior ofH in(x,t). Using the fact thatR(x,t)→R0(js1ex,t) rapidly asuxu→`, it
follows that

H in~x,t !;
1

p
2E

21

1

dx8
R~x8,t !

x82x
1

1

p F2E
2`

21

12E
1

` Gdx8HR~x8,t !

x82x
2

R0~js1ex8,t !

x8
2

x

x82 R0~js1ex8,t !J
1

1

p F2E
2d/e

21

12E
1

d/e Gdx8FR0~js1ex8,t !

x8
1

x

x82 R0~js1ex8,t !G1O~e2d22!, ~183!
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H in~x,t !;
1

p
2E

21

1 dx8

x82x
R~x8,t !1

1

p F2E
2`

21

12E
1

` Gdx8HR~x8,t !

x82x
2

R0~js1ex8,t !

x8
2

x

x82 R0~js1ex8,t !J
1

2

p
~d2e!Rj

0~js ,t !2
2x

p
R0~js ,t !F e

d
21G1O~e2d22!. ~184!

On combiningHout andH in, we find

H~js1ex,t !;H0~ t !1eH1~ t !x1
1

p
2E

21

1

dx8
R~x8,t !

x82x

1
1

p F2E
2`

21

12E
1

` Gdx8HR~x8,t !

x82x
2

R0~js1ex8,t !

x8
2

x

x82 R0~js1ex8,t !J
2

2e

p
Rj

0~js ,t !1
2x

p
R0~js ,t !1O~e2d22,ed!. ~185!
in
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Note that the above is true for anyd satisfying e!d!1.
We now take the somewhat more restrictive order
1@d@e1/2, for which case the expression~185! determines
H to o(e). On integrating by parts the last term in the seco
integral in Eq.~185!, and using

2E
1

1 dx8

x8
R0~js1ex8,t !5

2e

p
Rj~js ,t !1O~e2!,

~186!

it follows that up to and includingO(e) terms,

H~js1ex,t !;H0~ t !1eH1~ t !x1H~e!~x,t !, ~187!

where

H~e!~x,t !5
1

p
2E

2`

`

dx8HR~x8,t !

x82x
2

R0~js1ex8,t !

x8 J .

~188!

It is clear that

H~e!~x,t !→H~x,t ! for e→0, ~189!

where

H~x,t !5
1

p E
2`

` dx8

x82x
R~x8,t !. ~190!

The evolution equation then becomes

Gt5@H1 iR#Gx , ~191!

where

t5t/e. ~192!

This equation describes the disturbance evolution foj
5O(1) over the fastO(e) time scale; however, it is inaccu
rate over theO(1) time scale. To get the correct equatio
over this longer time scale, it is necessary to retainH1(t) and
H(e) in Eq. ~187! to obtain instead of Eq.~191!
g

d

Gt5
1

e
@eH1~ t !x1H~e!~x,t !1 iR~x,t !#Gx . ~193!

Notice that if we introduce a change of variable,

x5F~ t !n, F~ t ![e2*0
t dt H1~ t !, ~194!

then we obtain

Gt1
~n,t1!5

1

e
@H~e!~n,t !1 iR~n,t !#Gn , ~195!

where

t15E
0

t

F~ t !dt, ~196!

with

R~n,t !5
1

uGn~n,t !u2 F12
B

F~ t !e2 Im Vn~n,t !G ~197!

and

Im Vn~n,t !5
1

p
2E

2`

` dn8

n82n

]

]n8 F 1

uGn8u
ImS Gn8n8

Gn8
D G .
~198!

In the above, it is clear thatF(t) is an increasing function o
time; thus effective spatial localization of the disturbance
actuallyeF(t), which increases with time, corresponding
‘‘Zeldovich stretching.’’ It is clear from the above that th
evolution on a shortere spatial scale also occurs on a fast
O(e) time scale. Now assumeB!1. We notice that the fast
est time scale that appears isO(B1/2) as in the case of lin-
earized disturbances and this is for disturbances withe
5O(B1/2). For such localized disturbances, terms aris
from the product of surface energy and curvature play
O(1) role, as in the linearized analysis. However, the no
linear equations do give more accurate information on
renormalization aspect of the dynamics that are not pre
in the linearized equations.
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Note that Eq.~191! on the shorter scale evolution is onc
again the same form as the original Eqs.~2!–~8!, except that
the effective surface energy is increased fromB toBe22. For
B!1 ande!B1/2, the surface-energy term is formally sma
and therefore the limiting dynamics asB→0 is relevant at
both O(1) andO(e) scales. The boundary conditions at`
are different in thez and x variable, however; in one case
we match to a parabola at infinity and in the other case,
far-field state is a straight line. However, as suggested by
computation in paper III, the initial-/far-field matching con
ditions have no effect on the long-time asymptotic state
steady tip emerging in a direction of minimal surface ene
~in the presence of anisotropy! and a continually ballooning
tip without surface-energy anisotropy.

With this property, taken as an assumption for the p
poses of the present paper, it follows from the renormali
tion property shown in this section that at smaller a
smaller scales—all the way up to a cutoff scale ofO(B1/2),
the dynamics is expected to be self-affine in the presenc
surface-energy anisotropy, at least within the class of dis
bances considered in this section.

VII. DISCUSSION

In this second part of a three part sequence of papers
have incorporated small but nonzero surface-energy effe
with generally nonzero anisotropy, into the dynamics
z(z,t) in Im z<0, in the small Peclet number~P! limit. The
analysis throughout required allowed times to be long
terms of some inverse power ofB, but limited in the~small!
Peclet number byt!P21. This investigation has so far bee
possible for initial conditions that contain only singulariti
in the lower-halfz plane of the type given in Eq.~28!.

We are hampered here by a lack of rigorous mathema
support. There are no theorems known to us that guara
existence of solutions for all time for nonzero surface ener
Further, there is no guarantee that if the initial interface
analytic, it will remain so even for a short time. Indeed,
Sec. III A 1, we report that, with the approach of a not-to
weak singularity withb. 1

2 , the interface evolves over
long time. Over this long time scale, the inner equation fo
disturbance on the interface is precisely what one would
tain for a Hele-Shaw interfacial disturbance with no forcin
In this latter case, there is numerical evidence@19# suggest-
ing pinch-off, provided the initial interface is sufficiently dis
torted. Thus, we do not expect global existence of soluti
for a general initial condition. Nonetheless, since the ti
scale of the process described is long compared to that fo
advance, one can examine the interface before such an e
tuality is realized. Here, we proceed with the assumption
z(z,t) indeed remains analytic and univalent in Imz>0, at
least on the time scale of interest. Further, given that ze
surface-energy dynamics is expected to be well-posed
Im z<0, given similar results for Hele-Shaw flows@2,10#,
we have proceeded with a formal procedure of inner a
outer expansions near each point where an assumed ‘‘ou
asymptotic expansion fails. This procedure resembles w
has been done for isotropic Hele-Shaw flows@2#. Anisotropic
surface energy, when sufficiently strong, significantly alt
the inner equations of the singularities, generally requir
multiple inner regions. In carrying out a matched asympto
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expansion procedure, we tread again in areas of unce
mathematical validity: We are unaware of any rigoro
theory for global inner/outer matching for nonlinear tim
evolving partial differential equations in a complex doma
~This issue is currently under rigorous mathematical inve
gation; see@23#.!

Therefore, the matching principle we invoke, discussed
detail in Appendix A, rests on other grounds. It is similar
that utilized in the Hele-Shaw context@2#, where it proved
satisfactory. What is more, it has been confirmed analytic
for the linearized problem@1#. Further, interfacial evolution
predictions based on the analytic theory for the Hele-Sh
flow @2# have thus far been consistent with numerical cal
lations@11#, lending additional support to the basic premis
of this principle.

In the case of the analysis of an initial zero, there a
further uncertainties about the nature of the inner-equa
dynamics, since there are time scales when that dynami
described by a complex nonlinear partial differential equ
tion whose solutions are unknown. In those cases, we h
proceeded with further assumptions, as seen in Sec. V
Appendix B, about the nature of these solutions. We beli
the basic premises to be correct since the scalings they im
about interfacial deformations are consistent with earlier
merical calculations@11# for the isotropic case and those pr
sented in paper III of this paper sequence for strong isotro

Despite the qualifiers, the limitations on the nature of i
tial singularities, and the drawback of having to carry out
elaborate investigation in the lower-half complex plane,
have reported here what we believe to be the first analyt
investigation of the fully nonlinear dendrite dynamics in t
limit of vanishingly small surface energy. As a by-produ
we have obtained qualitative and quantitative information
the interfacial evolution, which we list below, answering,
least, some of the queries of Sec. I.

~i! Starting with some analytic interfacial shape, with
the class for which the analytic continuation ofz(j1 i0,0)
into the lower-half complex plane contains singularities on
of the type given by Eq.~28!, then all singularities continu-
ally approach the real axis@1#, even as small surface energ
alters and modifies their structures. This latter result follo
from our findings in Sec. II~and Appendix A! that the zero-
surface-energy singularities are in fact centers of inner
gions where surface energy is important. Though surface
ergy is expected to prevent singularities from actua
impinging on the real axis on the time scale of the dend
tip advance, the continual approach towards the real axi
many singularities causes interfacial distortion over sm
scales. The nature of an indentation depends on severa
rameters: the values ofb andE(0), theinitial distance from
the real axis, and values of the surface-energy parametB
and anisotropy indexa. The dependencies are detailed
Sec. III.

~ii ! It is well known from complex variable theory tha
small changes in the initial shape,z(j1 i0,0), can have radi-
cal effects on the corresponding singularity distribution
z(z,0) in Im(z),0. Thus, sensitive dependence of the int
facial dynamics~indeed, noise effects, as popularly describ
in the literature! can all be traced to the effect described
@1#. For one initial condition, singularities initially far from
the axis come close to the real axis and cause interfa
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indentations that are not seen for a slightly different init
shape without corresponding complex singularities. Th
the mechanism amplifies the differences in initial conditio
This sensitivity to initial conditions is not unexpected, sin
the zero-surface-energy interfacial evolution problem
known to be ill-posed. Therefore, the evolution for sm
nonzero surface energy is expected to be characterize
large, though bounded, Lyapunov exponents.

~iii ! Prior investigation@1# suggest that among the sing
larities considered here, poles approach the real axis the
est. For poles, whose strengths are not too weak, the in
tigation in Sec. III shows that surface-energy effects act o
slow time scale only. Until the time when surface ener
does become important, interfacial features are there
dominated by approaching poles, i.e., parallel-sided inde
tions. To the extent that any two-dimensional, one-sid
model can be relevant to actual three-dimensional dendr
this picture is in qualitative congruence with experimen
observations~see@20#, for instance!. Experiments also sug
gest a predominance of indentations initially aligned at 6
with the tip-advance direction. We are unable to explain t
feature so far, but expect that it has to do with properties
the solutions of the strongly anisotropic inner equatio
which are yet to be fully understood.

~iv! For a particular pole whose residue~strength! has real
and imaginary parts of the same order, as is necessary
side-branching rather than tip-splitting, we find that there
range of distanceuyu from the tip, over which the indentatio
depth scales asAuyu and the width is constant, as discuss
in Sec. III. The level of anisotropy does not affect this resu

~v! For an ensemble of poles that would account for si
branching~see@1#!, it is shown in Sec. III C that the selectiv
effects of surface energy on poles of differing streng
(uE0u) cause dendritic indentation widths to coarsen asAuyu,
over an intermediate range of distances from the tip. O
coarsening scaling differs from the theoretical equilibriu
results of Voorhees and Glicksman@22#, who obtained a
uyu1/3 scaling using a mean-field approach. Since our res
hold solely in an intermediate range over which surface
ergy has not completely dissipated the pole features, the
not necessarily a contradiction. Interestingly, the experim
tal results referred to in@22# give support to any exponen
between1

4 and 1
2.

~vi! While the zero-surface-energy dynamics predicts
terfacial cusp formation for dendrites for some class of ini
conditions, our investigation reported in Sec. V D~and in
detail in Appendix C! suggests that any nonzero surface e
ergy creates new singular structures centered aroun
‘‘daughter singularity’’ that prevent the interfacial cusp fo
mation. Instead, the daughter singularity impact marks
time beyond which the interface shape veers dramatic
away from the corresponding zero-surface-energy solut
This importance of the daughter singularity is consistent w
results for the isotropic Hele-Shaw problem@11#.

~vii ! In many cases, for a daughter singularity cluster
an initial zero~see Sec. V! in the vicinity of the real axis, the
inner equation is identical to the original equations~13!–~20!
except thatB is now effectively 1—what we have called th
‘‘standard problem.’’ This renormalization feature is also d
veloped in Sec. VI in a more general context for any loc
ized distortion that causes anO(1) deviation of the slope
l
s,
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from a slowly varying background state. The importance
the overall dynamics comes in combination with the t
characteristic-selection results to be reported in Sec. III: T
solution to the standard problem results in a steady dend
tip, in the presence of anisotropy only, with the resulti
emergent tip aligned in a direction of minimal surface e
ergy. The resulting emergent tip satisfies conditions
steady-state microscopic solvability theory, even as the
field is unsteady. Given that a general initial condition w
have many zeros ofzz in the lower-half plane, daughter sin
gularity effects are likely to be quite common. Each time
daughter singularity impacts the real axis, local tip structu
result along directions of minimal surface energy. Thus, fo
fourfold anisotropic dendrite developing side-branchin
each side branch results in a secondary tip aligned at r
angles to the original tip. Renormalization characterist
then suggest that this process continues, with side bran
of side branches forming tertiary tips, etc., in preferred
rections. Given a distribution of poles close to the real ax
causing deep interfacial indentations, one might expect
the impacts of daughter singularities associated with ze
will result in secondary dendrites. What remains to be
solved is the frequency with which these daughter singul
ties impacts cause tip selection. If these impacts occur in
mittently, one can expect emergent tips between so
neighboring indentations and not others. This dynamical f
ture can manifest itself as an additional mechanism for co
ening, since the selected near-parabolic tips advance
direction of minimal surface energy more rapidly than tho
not selected.

Our investigation of the small undercooling, sma
surface-energy effects on a dendrite began by taking the l
of P→0 and then studying surface-energy effects forB!1.
Such a procedure requires some relative ordering, withP
much smaller than some positive power ofB. The precise
restriction is harder to determine for complex plane dyna
ics because one must study the dynamics in an analytic
continued domain. We have yet to make a precise dete
nation of such a parametric restriction.

Further, we have not considered the case of singulari
that are initially far from the real axis but have larg
strengths~large residues for the case of poles!. These issues
along with the dynamics for other forms of singularities n
considered here, will be studied in the future in order
clarify if the overall interfacial dynamics are indeed dom
nated by the class of initial conditions, considered here
we suspect them to be.
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APPENDIX A: INNER EQUATIONS FOR
SINGULARITIES NOT CLOSE TO THE REAL AXIS

We investigate here the inner equations that appropria
account for surface energy effects in a local neighborhoo
a singularity of the outer-asymptotic expansion located az
5zs . We do so by scaling both dependent and independ
variables in a local neighborhood ofzs(t) with suitable pow-
ers ofB and then taking the limitB→0. In this section, we
restrict attention to the case whereuIm zsu@Bd, whered.0
depends ona andE0(0) and will be determined in each cas
as below. We allow for the possibility thata!1 and
uE0(t)u!1. Thus, one has to consider different possible re
tive orderings ofa, uE0(t)u, and B. We will assume, for
simplicity of algebraic manipulations, that

a5âBl, ~A1!

E0~0!5Ê0~0!Bm, ~A2!

so that assumptions on ordering are reflected through
exponentsl,m>0. Note that each ofâ and Ê0(0) in the
above are strictlyO(1) @in the sense that it is noto(1)#, as
B→0. It is not necessary to assume a power-law depende
as in Eqs.~A1! and ~A2!; all the results quoted here hold
O(Bl) and O(Bm) are understood asO(a) and O„E0(0)…,
respectively.
de
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Consider a neighborhood ofzs(t)5zs01Bzs1 , where the
outer-asymptotic behavior is given by Eq.~36! for b.0. We
define inner variablesx, t, andG as

z2zs~ t !5Bd
1

C0~ t !
x~z,t !, ~A3!

C1~ t !5Bct~ t !, ~A4!

z~z,t !;E
0

t

dt8q2„zs~ t8!,t8…

1Bm1~12b!dÊ0~0!G„x~z,t !,t~ t !…. ~A5!

The appropriate choice of constantsd,c and the functions
C0(t) andC1(t) will be determined shortly. The choice ofd
and c in each of the subsections is to be understood in
context of that subcase only. When Eqs.~A3!–~A5! are sub-
stituted into Eq.~21!, then after collecting all possible dom
nant order contributions, we obtain the following inner equ
tion, provided there are no zero-surface-energy singulari
within Bd of the real axis:
B2cĊ1~ t !Gt1S Ċ0~ t !

C0~ t !
2q1z

„zs~ t !,t…D xGx2
q2z„zs~ t !,t…xBbd2m

C0~ t !E0~0!

5B12~3/2!m2@3~22b!/2#d
C0

3/2~ t !

iÊ0
3/2~0!z̃z

3/2
„zs~ t !,t…

S 22
]2

]x2
~Gx

21/2!D
2B11l1~1/2!m2~b16/2!d

âe2 i4u0C0
7/2~ t !Ê0

1/2~0!

2izz
7/2
„zs~ t !,t…

S 2

3

]2

]x2
~Gx

3/2!D
2B11l2~7/2!m1~7b26/2!d

âei4u0z̃z
1/2
„zs~ t !,t…

2iC0
1/2~ t !E0

7/2~0!
S 2

2

5

]2

]x2
~Gx

25/2!D . ~A6!
the

tic

v-
To simplify Eq. ~A6!, it is convenient to define

C0~ t !5expS E
0

t

dt8q1z
„zs~ t8!,t8…D . ~A7!

It is to be noted that in the event that the leading-or
asymptotic solution on the real axis~i.e., the interface dy-
namics! is still given by the solution of the associated zer
surface-energy problem, it is appropriate to replaceq1 , q1z

,

q2 , andz̃z occurring in Eqs.~A5!–~A7! by their correspond-
ing zero-surface-energy solution values. However, by ke
ing them more general, we account for situations in wh
the actual solution on the real axis has veered dramatic
r

-

p-
h
lly

from the corresponding zero-surface-energy solution by
prior impact of other singularities~including daughter singu-
larities, studied later!.

In order to match to the leading-order outer-asympto
behavior in Eq.~36!, zz;E0(t)@z2zs(t)#2b, it is necessary
that asx→` ~for argx restricted to an appropriate interval!,

Gx~x,t!;x2b. ~A8!

The initial condition is

Gx~x,0!5x2b. ~A9!

Note that in order for Eqs.~A8! and ~A9! to be valid, we
must require thatd.m/b since the outer-asymptotic beha
ior zz;E0(z2zs)

2b is valid only for uz2zsu!uE0u1/b. If d
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5m/b, the matching and initial condition must reflect out
behavior~29!. So Eq.~A8! has to be replaced by

Gx;
A0~ t !

Ê0~0!C0~ t !
1x2b for x→`, ~A10!

while

Gx~x,0!5
A0~0!

Ê0~0!
1x2b. ~A11!

It is a priori unclear what sectors in the complexx plane
one should invoke the matching conditions~A8! or ~A10!. In
general, as shall be seen later, it is an overspecificatio
require that the matching condition be applied for all valu
of argx.

In @2#, while considering the isotropic Hele-Shaw pro
lem, it was suggested that the matching be guided by
principles.

~a! The sector where Eq.~A8! is demanded in the far-field
gives rise to a unique solution to the inner problem.

~b! The range of argx where matching is invoked trans
lates in thez variable to directions towards the physical
relevant region~real axis in our current formulation!.

The first principle~a! would be justified if one were to
assume that the original initial value problem in the real a
has a unique analytic solution~at least up to some positiv
time! since its analytic continuation up to an inner neighb
hood ofz5zs will also be unique. The second principle~b!
was invoked in analogy to the steady-state dendrite or H
Shaw problem. For the time-evolving problem, there is
known equivalent to global Stokes lines to check whet
invoking principle ~b! for each singularity would be tanta
mount to requiring that the outer zero-surface-energy s
tion be valid on a part of the complex plane adjacent to
real axis. However, when we applied~b! to the linearized
complex dynamics in@1#, the results were consistent wit
what was obtained directly from the real domain equatio
through Fourier transforms. Also, many of the consequen
of the complex dynamics of singularities obtained by app
ing the principles above have been found to be consis
with direct numerical calculations of the associated isotro
Hele-Shaw flow@12# in the real domain, for a sequence
problems with ever-decreasing surface energy. Thus, the
some indirect evidence that invoking thead hocprinciple~ii !
is appropriate for the nonlinear dynamical problem as w
We illustrate sectorial matching in Fig. 4.

In order to find a leading-order inner equation, it is ne
essary to determine which of the terms in Eq.~A6! contain-
ing powers ofB are dominant. That determination clear
depends on the values of ordering parametersl and m, as
well as the choice ofc. To distinguish the different possibl
cases, it is convenient to define

lc[
4~b23m!

3~22b!
, ~A12!

cc[
3~22b!

4b
~l2lc!5

3

4b
@~22b!l2 4

3 ~b23m!#.

~A13!
to
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Notice, before proceeding, that large values ofl andm cor-
respond toweakanisotropy and weak singularities, respe
tively.

1. The case ofcc<0

For this case, ifb,2, then inspection of the above equ
tions indicates that anisotropy effects are strong; ifb.2,
then the anisotropy is weak. It is to be noted that in eith
case,cc,0 necessarily implies thatm,b/3(11l), i.e., the
singularity strength is not ‘‘too weak.’’ This condition wil
be used later.

We note that if we seek consistency in a dominant bala
procedure between the first term on the left of Eq.~A6! and
the first two terms on the right of Eq.~A6!, one is led to the
condition c5cc,0, corresponding to a long time scal
sinceBc@1. This finding is inconsistent with the observatio
that condition~iii ! in Sec. IV holds for anyt.0 and there-
fore the outer perturbation expansion becomes inconsis
for any t.0 in a neighborhood ofz5zs . Thus, we seek an
alternate dominant balance by choosingc50, so that the
inner time scalet5O(1). Then, fort5O(1) we choose

d5
2~11l!1m

b16
, ~A14!

a choice consistent with condition~iii ! in Sec. II. Note that
d.m/b is required for the validity of Eqs.~A8! and ~A9!.
The resulting leading-order inner equation is simplified if w
further choose

C1~ t !5E
0

t

dt8
âe2 i4u0C0

7/2~ t8!Ê0
1/2~0!

2i z̃0z
7/2
„zs~ t8!,t8…

, ~A15!

in which case one has the following leading-order parame
free inner equation:

Gt52
2

3

]2

]x2 ~Gx
e/2!. ~A16!

The isotropic surface energy term (Gx
21/2 term! in Eq. ~A16!

is found to beO(B24bc0/3), and the anisotropic term con
taining Gx

25/2 is O(B(4/3)b(11l)24m), both o(1), andhence
neglected in the leading-order equation~A16!.

The strongly anisotropic equation~A16! has a similarity
solution of the form

Gx5t22b/b16e22p i ~b/b16!F2~n!,

n5e22p i ~1/b16!
x

t2/b16 , ~A17!

whereF(n) satisfies

F2F-16FF8F912F831
b

b16
F21

2n

61b
FF850,

~A18!

with asymptotic condition

F;n2b/2 ~A19!
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asn→` in some as-yet undetermined sectors, correspond
to the given initial and far-field matching condition~A8!. In
applying matching principle~b!, discussed above, to th
similarity solution, to determine the ranges of argn over
which one should seek the asymptotic behavior~A19!, the
following problem arises: argn is related to argx and arg@z
2zs(t)# ~which defines which directions are towards the r
z axis! in a complicated manner, through a sequence of tra
formations @see Eqs.~A3!, ~A4!, and ~A17!#. Therefore,
matching requires knowledge of the specific outer soluti
However, we note that replacingn by neifm and F by
Fe2 ifmb/2, where fm54pm/(b16) for any integerm,
leaves both Eqs.~A18! and~A19! invariant. The implication
is, then, that if one were to find a unique solutionF(n) to Eq.
~A18! satisfying Eq. ~A19! for argn in @24p/
(b16),4p/(b16)#, as will be shortly determined, ther
will also be a unique solution to Eq.~A18! satisfying Eq.
~A19! for argn in @fm24p/(b16),fm14p/(b16)#,
which can be generated from the one corresponding
m50. One of these intervals in argn will be appropriate in
invoking principle~b!, i.e., would correspond to directions i
the z plane towards the real axis. Thus, it is enough to d
cuss the solution form50.

We now discuss how a unique solution to Eq.~A18! can
be expected when Eq.~A18! is certain on only the positive
real n axis. We will demonstrate why Eq.~A19! is in fact
satisfied for largeunu for argn in the interval @24p/
(b16),4p/(b16)#. Using a dominant balance techniqu
one can extract from Eq.~60! the higher-order asymptoti
corrections to Eq.~A19!,

F;n2b/2@11a1n232b/21a2n262b1a3n2923b/21¯#,

~A20!

where

a152
b

8
~213b!~413b!, ~A21!

a25
b

128
~213b!~413b!~4801774b1366b2155b3!,

~A22!

a352
b

384
~21b!~41b!~213b!~413b!

3~20 160138 520b127 340b218526b31955b4!.

~A23!

One obtains exponential corrections to the algebraic beha
in Eq. ~A20!, through either a Borel resummation of th
divergent series~A20! involving powers ofn232b/2, as de-
tailed in @2# for a similar problem, or by linearizing Eq
~A18! about the leading-order asymptotic behavior~A19!
and examining WKB solutions of the associated lineariz
homogeneous equation, as first suggested by Kruskal
Segur@24# for some nonlinear third-order differential equ
tion. The exponential corrections are found to be of the fo

e6 i @2/~31b/2!3/2#n3/21b/4@11o~1!#. ~A24!
g
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By insisting that the leading-order asymptotics for largen
on the positive realn axis be given by Eq.~A19!, we have
actually ensured the following three conditions.

~a! The leading-order asymptotic behavior is given by E
~A19!, rather than a more generala0n2b/2 for which a0Þ1
@such behavior is still consistent with Eq.~A18!#.

~b! No exponential correction of the form

e2 i @2/~31b/2!3/2#n3/21b/4@11o~1!# ~A25!

is present in the largeunu asymptotics for argn50, as other-
wise Eq.~A19! could not possibly be valid. Since a Stoke
multiplier can only change across an anti-Stokes line wh
the ratio between two exponential terms is a maximum
follows that this condition will rule out an exponential o
the form ~A25! for large unu and argn in the interval
@0,2p/(b16)). It also ensures that the formal series~A19!
is valid in this range of argn for large unu.

~c! No exponential correction of the form

ei @2/~31b/2!3/2#n3/21b/4@11o~1!# ~A26!

is present for argn50. Once again, since the Stokes mul
plier can change across an anti-Stokes line only, it follo
that this condition will rule out an exponential of the for
~A25! for largeunu when argn is in (22p/(b16),0#, which
ensures that the formal series~A20! is valid for this range of
argn for large unu.

From ~b! and ~c! above, it follows that the requiremen
~A19! for large positiven ensures that this asymptotic seri
is actually valid for large unu when argn in @22p/
(b16),2p/(b16)#. In reality, this is valid for the entire
interval @24p/(b16),4p/(b16)#, because the exponen
tial term ‘‘born’’ at either of the anti-Stokes line
argn52p/(b16),22p/(b16) is subdominant compared t
terms of the asymptotic series~A19! until one moves out-
wards to the nearest Stokes lines.

Conditions~a!–~c! select a unique solution to the third
order differential equation~A18!, which we implemented nu-
merically by integrating Eq.~A18! along the positive realn
axis towards the origin, starting atn5L for some suitably
largeL and using Eq.~A20! to determine the initial condition
F(L), F8(L), and F9(L). Possible spurious solutions ar
avoided by ensuring that the computedF at some fixed point
on the real axis does not change~to within numerical inte-
gration accuracy of 10210) whenL is continually increased
An L of 20 seemed to accomplish that. We also found t
the asymptotic series~A19! quite accurately describes th
computed solution whenn is sufficiently large~more than 10
or so!. Indeed, integration fromn5L to any point closer to
the origin, whose argument lies in@24p/(b16),4p/
(b16)#, suggested that Eq.~A19! remains valid in this ex-
tended sector. One must be vigilant in controlling growth
round-off error, generated by exponentials of the form~A24!,
when integration is done outwards from the origin.

Notice that Eq.~A18! admits one or more isolated singu
larities n in for F in the form

F;Ain~n2n in!1/3@11ã1~n2n in!5/31¯#, ~A27!

where there is one relation between andã1 and Ain , found
from substitution of Eq.~A27! into Eq. ~A18!, and matching



re

ur
-
e
d

et
bl
th

n.
ua
r

ric

-
r

e
w
e
e

r-
q.

a
to

ar-

are
this

er-

ee

,

ce-

PRE 59 699DENDRITIC CRYSTAL GROWTH FOR . . . . II. . . .
appropriate powers ofn2n in . However,ã1 and Ain cannot
be determined fully through a local expansion. What is mo
Eq. ~A18! alsoallows local solutions for whichF has double
zeros,

F;b0~n2n0!2. ~A28!

By straightforward adaptation of the numerical proced
detailed in@2# for another differential equation with some
what different kinds of isolated singularities, we determin
from integrating Eq.~A18! that the three pairs of one-thir
singularities ofF whose values ofn in are closest to the origin
are

0.001 073 765.470 147 6i ,

20.777 996 9768.184 871 44i , ~A29!

21.358 520 87610.326 151 6i .

Applying arguments similar to those presented in@2#, which
have been subsequently confirmed rigorously by other m
ods@25#, for the isotropic Hele-Shaw problem a denumera
infinite set of singularities that asymptotically approaches
anti-Stokes lines~from the outside!: argn564p/b16 can be
expected.

In our computation, we encountered no zeros ofF @recall
Eq. ~A28!# within a 16316 square centered at the origi
This was deduced by noting that when the differential eq
tion ~A18!, integrated on a once-traversed closed contouC,
resulted inF returning to its original value~to within numeri-
cal error!, rCdn(F8/F) was also zero~to within numerical
error!. We therefore concluded thatF did not have any zeros
and the only singularity was of the type Eq.~A27!.

The existence of singularities~A27! in the similarity vari-
able implies that

zz;Bm2~b12/3!dÊ0~0!Ain
2 t2~b12/3!~2/b16!

3C0
5/3~ t !@z2z in~ t !#2/3 ~A30!

in the neighborhood of the singularity, defined by the rest
tion

uz2z in~ t !u!BduC0
21~ t !n int

2/b16u, ~A31!

where

z in~ t !5zs~ t !1
n in

C0~ t !
Bdt2/b16. ~A32!

Inner-inner region for strong anisotropy

We note that the locally singular behavior~A30! is not
consistent with approximating Eq.~A6! by Eq. ~A16!. In all
that follows, the phrase ‘‘inner-inner’’ refers to small, finite
surface-energy zones about singular points that arise in
gions that are already ‘‘inner’’ solutions for the zero-surfac
energy outer singularities. The approximation breaks do
locally near eachz5z in(t), because the first term on th
right side of Eq.~A6! is not small. It is appropriate to defin
inner-inner variables by
,

e

d

h-
e
e

-

-

e-
-
n

z2z in~ t !5Bd̂
1

C0~ t !
x̂~z,t !, ~A33!

C1~ t !5Bĉt̂~ t !, ~A34!

z~z,t !;E
0

t

dt8q20
„zs~ t8!,t8…

1Bm2~b12/3!d1~5/3!d̂Ê0~0!Ĝ„x̂~z,t !,t̂~ t !…,

~A35!

where

d̂5 3
4 $2@~b12/3!d2m#2l%.d, ~A36!

ĉ53S 3@~b12/3!d2m#23/2

2
2l D.0. ~A37!

The ‘‘inner-inner’’ equation is then

Ċ1~ t !Ĝt̂5
C0

3/2~ t !

iÊ0
3/2~0!z̃0z

3/2
„zs~ t !,t…

S 22
]2

]x̂2
~Ĝx̂

21/2!D
2

âe2 i4u0C0
7/2~ t !Ê0

1/2~0!

2i z̃0z
7/2
„zs~ t !,t…

S 2

3

]2

]x̂2
~Ĝx̂

3/2!D
2B2l

âei4u0z̃0z
1/2
„zs~ t !,t…

2iC0
1/2~ t !Ê0

7/2~0!
S 2

2

5

]2

]x̂2
~Ĝx̂

25/2!D .

~A38!

Note that the last term is retained only for theO(1) anisot-
ropy case, wherel[0; otherwise, it is neglected at this o
der. While we do not know much about the solution to E
~A38!, we note that, sinceĉ.0, one might expect that the
solution to Eq.~A38! equilibrates over a short time scale to
state driven by the inner solution, that is, to the solution
the equation for the outer of the two inner regions. The f
field boundary condition onĜx̂ must be

Ĝx̂;Ain
2 t22~b12/3!/~b16!x̂2/3, ~A39!

in order to be consistent with Eq.~A30!. Since the inner-
inner region is centered around inner singularities, that
outside the sector of inner-outer matching, we expect
region to play a passive role.

In Fig. 5, we sketch the various outer, inner, and inn
inner regions in this case.

2. The case ofcc>0

It is convenient to subdivide this case further into thr
cases: m>b/3 with 0,b,2, m>b/3 with b.2, andm
,b/3. The borderline caseb52 will not be discussed here
since it requires a significantly different analysis.

a. Subcasem>b/3, 0<b<2

There is an initial stage, marked by a fastO(Bcc) time
scale—faster than the time scale over the zero-surfa
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energy solution evolves, where there is a dominant bala
between the left-hand side of Eq.~A6! and the first two terms
on the right of Eq.~A6!. In this case, for studying the fas
time scale dynamics, it is appropriate to choose the follow
scales in Eq.~A6!:

c5cc , d5
l12m

2b
, ~A40!

and takeC1(t) in accordance with Eq.~A15!. The resulting
leading-order inner equation is given by

Gt52 2
3 ~Gx

3/2!xx1
2z̃0z

2
„zs~0!,0…ei4u0

Ê0
2~0!â

~22Gx
21/2!xx

2
B2lei8u0z̃0z

4

C0
4Ê0

4~0!
~2 2

5 Gx
25/2!xx . ~A41!

The last term in Eq.~A41! is neglected unlessl[0. It is to
be noted thatd>m/b, the equality holding only forl50.
Thus, forl.0, the inner region is small enough in size ev
for t5O(1) so that the appropriate far-field matching~at
least in some complexx sector! and initial conditions are
given by Eqs.~A8! and ~A9!, respectively. Forl50, since
d5m/b, the matching and initial conditions are inste
given by Eqs.~A10! and ~A11!.

For t!1, it is clear from the initial condition~A9! that
this early time solution must involve a dominant balan
between the left-hand side of Eq.~A41! and the first term on
the right. The similarity solution~A17!, discussed in detail in
the context of strong anisotropy, is appropriate in describ
the evolution at this time stage since on substituting this i
the other terms on the right of Eq.~A16!, one obtains smal
errors fort!1 ~except in a small vicinity of singularities o
F!. There is once again an inner-inner region aroundz in cor-
responding to each singularityn in of F; however, we refrain
from any further discussions of this, since we cannot
much about its solution. We will assume, as we have d
before, that the inner-inner solution can be matched as
propriate to the inner solution behavior near a singularity
is to be noted that the similarity solution~A17! for t!1 also
defines a regimet2/(b16)!uxu!1, where Eq.~A8! holds in
some complex sectors. In this regime, the outer solut
even forl50, behaves like (z2zs)

2b. Thus, the similarity
solution is valid in this regime even forl50.

The similarity solution discussed in the preceding pa
graph is invalid whent5O(1), since Eq.~A41! is obviously
different from Eq.~A16!. We are unable to say much abo
the dynamics at this stage because of the difficulty in solv
Eq. ~A41!. However, forl50, we note that the effective
inner region size, deduced from the similarity solution to
O(dt2/(b16)), is now O(uE0u1/b) and has now completely
engulfed any region over which the outer behaviorz
2zs)

2b can be observed. Thus, there is no trace of ini
singularity left forl50 at this stage and we can say that t
initial singularity has dissipated over a fast-time scale, e
beforet is strictly O(Bcc); all we are left with are singulari-
ties of the inner regions. The dynamics forl50 for t@1
will not be discussed any further.
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However, for l.0 and t@1 it is natural to assume
~based on the assumed continuity of dynamics on the an
ropy parametera! that the appropriate solution is dictated b
a balance between the left of Eq.~A41! and the second term
on the right—this is essentially the Harry-Dym equatio
which is the inner equation in the absence of anisotropy@2#.
To explore this matter further, we introduce new tempo
and spatial scales.

Dissipation of weak singularities forl.0. We now
choose inner time and space scales in Eq.~A6!, correspond-
ing to

c53m/b21, d5m/b ~A42!

and choose

C1~ t !5E
0

t

dt8
C0

3/2~ t8!

iÊ0
3/2~0!z̃0z

3/2
„zs~ t8!,t8…

. ~A43!

Since 3m/b21,cc for b,2, it is clear that this stage fol
lows that in Sec. V B 1. Also, notice that this time sca
coincides with t i , described in~ib! in Sec. IV. With the
substitutions~A49! and ~A43! back into Eq.~A6!, one ob-
tains, in the limitB→0, the Harry-Dym equation,

Gt522
]2

]x2 ~Gx
21/2!. ~A44!

Clearly, under this limit and on these scales, the behavio
isotropic. Whent5O(1), thefar-field matching condition is
given by Eq.~A10!, at least in some complex sectors. We a
unable to find exact solutions to Eq.~A44! satisfying initial
and matching conditions~A10!. Nonetheless, Eq.~A44! does
have a similarity solution:

Gx5t22b/3~22b!F22~n!, n5x/t2/3~22b!, ~A45!

whereF(n) satisfies

1

3~22b!
F23~bF22nF8!5F-, ~A46!

with the asymptotic far-field condition

F~n!;nb/2, n→`. ~A47!

The solution~A45! remains a valid solution in the prese
case of interest for the restricted regimeBcc2c!t!1,
uxu5t2/@3(22b)#!1 since Eq.~A10! reduces to Eq.~A8! for
1@uxu@t2/@3(22b)#.

When t5O(1), because the boundary layer wid
Bm/bt2/@3(22b)# is increased in size toO(Bm/b)5O(E0

1/b),
there is no remnant of the initial singularity behavior left a
more. Thus, forl.0, the weak singularity has complete
dissipated before timet becomes strictlyO(B(3m/b21)).

Together with the previous conclusion onl50, we con-
clude that all sufficiently weak initial singularities (m
>b/3) for 0,b,2 get dissipated over a fast time scale a
are instead replaced by singularities of the inner equat
Thus, the specific type of singularity we started out w
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cannot impact the features observed at the physical inter
later in time. We cease to study such singularities any
ther.

b. Subcasem>b/3, b>2

In this case, sincecc,3m/b21, the time stage given by
Eq. ~A42! is the first relevant time scale in the dynamics. T
same scales~A42! and ~A43! and the resulting equatio
~A44! are still valid. However, since the initial and matchin
conditions are given by Eqs.~A11! and~A10!, the solution in
general fort5O(1) remains unclear. However, foruxu!1,
it is consistent to assume that the solution is given by

Gx;t2b/@3~b22!#F22~xt2/@3~b22!#!, ~A48!

where F(n) satisfies Eq.~A46! as before, except that th
matching condition~A47! is invoked now forn→0 rather
than`. It is clear that ast→`, the region in whichGx has
the singular behaviorGx→x2b shrinks. Thus, over the fas
time scaleO(Bc), as identified in Eq.~A42!, any trace of the
initial singularity is wiped out by surface energy effects. W
cease to discuss this case any further.

c. Subcasem<b/3

From the expressions forcc , it follows that in this case
b,2 necessarily. Thus, in this subcase,l>lc.0, 0,b
,2, which means that the anisotropy is weak but the sin
larity strength is not too weak.

As before forcc.0, there is an initial stage of evolutio
where the inner equation is given by Eq.~A6! with the
choice of time and space scale corresponding to Eq.~A40!,
leading to Eq.~A41!, except that theO(B2l) term is now
necessarily negligible. Fort!1, once again there is a sim
larity solution as described in the preceding subsection, w
inner-inner regions around each singularity. Once again ft
strictly O(1), notmuch can be said because of the difficu
of solving Eq.~A41!.

While the time evolution of Eq.~A41! for t5O(1) re-
mains an open problem at this stage, we note that fort@1, a
consistent solution can be found by neglecting anisotro
terms in Eq.~A41! for which the similarity solution~A46! to
the Harry-Dym equation is obtained. However, since t
solution continues to be valid until timet is strictly O(1), it
is sensible to study this in the context of the equations v
for t5O(1) by looking at the special caset!1, as we shall
do now.

The stage t5O(1). In this case, it is necessary to g
back to Eq.~A6! and choose

c50, d5
223m

3~22b!
. ~A49!

It is to be noted that sincem,b/3, d.m/b>0, a condition
consistent with the initial and matching conditions~A9! and
~A8!. With these specifications for Eq.~A49!, andC1 chosen
in accordance with Eq.~A43!, the resulting leading-orde
equation, derived from Eq.~A6!, is again the Harry-Dym
equation ~A44!. The neglected anisotropic terms a
O(B(l2lc)) andO(B(l1lc)), each of which is small in this
subcase~recall also that now we are left withcc.0).
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The solution to Eq.~A44! that satisfies the asymptoti
matching condition is given by Eq.~A45!, whereF satisfies
Eqs.~A46! and~A47!. We know that the similarity equation
above admits inner singularities of the form

F~n!;Ain~n2n in!2/3, ~A50!

Ain5S 3n in

2~b22! D
1/3

, ~A51!

for various values ofn in , which have been determined nu
merically @2#. In outer variables, the solution in the vicinit
of one of these inner singularities becomes

zz;Bm2~b24/3!d
Ê0~0!

Ain
2 t2~b24/3!~2/3~22b!!

3C0
21/3~ t !@z2z in~ t !#24/3. ~A52!

~Notice that ifb[ 4
3 , the inner singular solution with surfac

energy effects is the same as the outer, zero-surface-en
solution.! The particular inner singularity atn in is then lo-
cated at

z in~ t !5zs~ t !1
n in

C0~ t !
Bdt2/3~22b!. ~A53!

The vicinity of z5z in ~corresponding toun2n inu!1), where
Eq. ~A52! is valid, is given by the restriction

uz2z in~ t !u!BduC0
21~ t !n int

2/3~22b!u. ~A54!

Inner-inner equation for t5O(1).
It is clear from substituting Eq.~A52! into the original

equation~A6! that the approximation leading to Eq.~A44! is
invalid in an immediate neighborhood of each singularityz
5z in .

We introduce inner-inner variables in the form

z2z in~ t !5Bd̂
1

C0~ t !
x̂~z,t !, ~A55!

C1~ t !5Bĉt̂~ t !, ~A56!

z~z,t !;E
0

t

dt8q20
„zs~ t8!,t8…

1Bm2~b24/3!d2~1/3!d̂Ê0~0!Ĝ„x̂~z,t !,t̂~ t !….

~A57!

The choice of inner-inner scales

d̂5 3
8 $l12@m2~b24/3!d#%.d, ~A58!

ĉ5 3
8 „l22$4/323@m2~b24/3!d#%…5 3

8 ~l2lc!.0,

~A59!

produces the same form of an inner-inner equation as
~A38!. However, the far-field matching condition in this ca
must correspond to

Ĝx̂;Ain
22t22~b24/3!/@3~22b!#x̂24/3 ~A60!
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to reflect the inner-equation singular behavior~A52!, at
least in some sector of the complexx̂ plane. As men-
tioned earlier in the context of strong anisotropy, we a
unable at this point to shed much light on the dynamics
the inner-inner region, though we believe appropriate so
tions exist that match the inner equation. The structure
the various outer, inner, and inner-inner scales and solut
for the weakly anisotropic singularity investigated abo
is the same as in Fig. 5, but with the following scales:~a!
outer singularityzz;E0(t)@z2zs(t)#2b, ~b! size of inner
region O(B223m/3(22b)), ~c! inner singularity~there are ac-
tually a countably infinite number of inner singularitie!
zz;C(t)@z2z in(t)#24/3, ~d! size of inner-inner region
O(B3/8$l12@m2(b24/3)d#%).

In summary, if initial singularities are sufficiently fa
from the real axis and are also sufficiently weak (m>b/3),
then all traces of those singularities disappear on a fast
scale, and therefore one need not consider the effect of
singularities approaching the real axis later in time. For s
gularities that are stronger, the zero-surface-energy singu
ity is preserved as an ‘‘outer singularity,’’ in the sense th
there is a subregion forBg!uz2zs(t)u!1 for some positive
g, where the zero-surface-energy singular behavior az
5zs(t) remains valid. This ‘‘outer singularity’’ is in fact the
center of an inner region where surface energy effects
significant. The precise nature of the inner equations, h
ever, depends on the relative orderings of anisotropy, sin
larity strength, and surface energy parameterB. Indeed, it
appears there are multiple inner regions in general. Howe
when the ‘‘outer singularity’’ comes very close to the re
axis, as it must eventually, the inner limits discussed in t
section are invalid, and we must investigate again the in
space and time scales, as we will in the following secti
Note that this paragraph answers those questions raise
issue~i! in Sec. I.
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APPENDIX B: INNER EQUATIONS AROUND ZERO
AND DAUGHTER SINGULARITIES

FAR FROM REAL AXIS

As with singularities in Appendix A, we have noted th
the regular perturbation~22! becomes disordered in the im
mediate vicinity of a zero ofz0z . In the analysis of this
section, we require that the zero be further from the real a
thanO(Bd), whered5 2

7 for l> 4
7 and equal to2

11 (11l) for
l, 4

7 . This restriction allows, as in the singularity analysis
Sec. IV, asymptotic approximations toq1 ,z̃z using the lead-
ing terms of its Taylor expansion atz5z0(t). In the neigh-
borhood of a zero, we define the inner variables as

z2z0~ t !5Bd
1

C0~ t !
x~z,t !, ~B1!

t~ t !5B2d1C1~ t !, ~B2!

z~z,t !;B2dC2~ t !G„x~z,t !,t~ t !…

1E
0

t

dt8q20
„z0~ t8!,t8…1z„z0~0!,0…, ~B3!

whereC0(t), C1(t), andC2(t) will be determined to sim-
plify the resulting inner equation.

With theB2d scaling factor in front ofG in Eq. ~B3!, it is
seen that a requirementGx;constx for an appropriate con-
stant allows matching to the leading-order outer solution t
locally behaves as Eq.~125!, and determines the scale fact
B2d in Eq. ~B3!.

Substituting Eqs.~B1!–~B3! into the full equation~21!
and collecting the dominant terms inB, we find an inner
equation of the form
Ċ1~ t !Bd2d1Gt52
q2z

„z0~ t !,t…

z0zz„z0~ t !,t…
C0Gx1

q20z
„z0~ t !,t…

C0~ t !C2~ t !
x1

B12~7/2!dC0
3/2~ t !

i z̃0z
3/2
„z0~ t !,t…C2

3/2~ t !
S 22

]2

]x2 ~Gx
21/2! D

2B11l2~11/2!d
âei4u0z̃0z

1/2
„z0~ t !,t…

2iC0
1/2~ t !C2

7/2~ t !
S 2

2

5

]2

]x2 ~Gx
25/2! D2B11l2~3/2!d

âe2 i4u0C2
1/2C0

7/2

2i z̃0z
7/2
„z0~ t !,t… S 2

3

]2

]x2 ~Gx
3/2! D .

~B4!
nd

the
age
es
The choice ofd and d1 depends on the relative size of a
isotropy and the stage of evolution. There are two cases
pending on whetherl> 4

7 ~weak anisotropy! or 0<l, 4
7

~strong anisotropy!.

1. Weakly anisotropic case: l> 4
7

There appear to be many differing stages of evolution
the zero/daughter singularity pair, so for purposes of cla
it is worthwhile separating these stages into the differ
subsections below.
e-

f
y
g

a. Short-time development

At the earliest stage, an appropriate choice of time a
space scale is

d15
~9l24!

4
, d5

l

2
. ~B5!

Note that if l5 4
7 , the choice ofd and d1 is the same as

given in the next subsection. Thus, the discussions in
next subsection would suffice to describe the earliest st
whenl5 4

7 . In the rest of this subsection, we limit ourselv
to l. 4

7 .
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With the choice ofd1 and d, as above, Eq.~B4!, to the
leading order, reduces to

k1Gt5k2~22Gx
21/2!xx1k3~2 2

5 Gx
25/2!xx , ~B6!

where

k15Ċ1~0!, ~B7!

k25
C0

3/2~0!

i z̃0z
3/2
„z0~0!,0…C3

3/2~0!
, ~B8!

k35
âei4u0z̃0z

1/2
„z0~0!,0…

4iC0
1/2~0!C2

7/2~0!
. ~B9!

With appropriate choices ofC0(0), Ċ1(0), andC2(0), there
is no loss of generality in settingk1 , k2 , andk3 in Eq. ~B6!
to 1 and at the same time demand

Gx;x ~B10!

for largeuxu in some sector of the complex plane, to match
the outer solution. Further, the appropriate initial condition

Gx~x,0!5x. ~B11!

It is clear that fort!1, the second term on the right of E
~B6! is more important than the first. With this balance, it
found to be consistent to assume that fort!1,

Gx;t2/13F22~n!, n[x/t2/13, ~B12!

whereF satisfies the ordinary differential equation:

2
1

13F3 ~F12nF8!5~F5!- ~B13!

with the asymptotic matching condition

F;n21/2 as unu→` ~B14!

along a ray in a sector argn in ~2 4
13p, 4

13p!. Such solutions
have been numerically computed, using a procedure sim
to that described in Appendix A.

For t5O(1), theasymptotic solution~B12! becomes in-
valid and there are no similarity solutions to Eq.~B6! that
satisfy the asymptotic matching condition at`. It is unclear
what happens at this stage. However, fort@1, it is consis-
tent to assume that

Gx;t2/9F̃22~ ñ !, ñ[x/t2/9, ~B15!

whereF̃ satisfies

2 1
9 F̃23~ F̃12ñF̃8!5F̃-, ~B16!

which is a similarity solution ofGt5(22Gx
21/2)xx . The

condition matching the solution to the far-field, zero-surfa
energy solution imposes

F̃~ ñ !;ñ21/2 as ñ→` ~B17!
s

ar

-

for argn in ~24p/9,4p/9!. Such solutions have been calc
lated for the isotropic Hele-Shaw problem@2#, and are
known to contain a string of23-power singularities ofF that
asymptotically approach the Stokes line argn564p/9, from
the outside of the sector~24p/9,4p/9!. Around each such
singularity, sinceGx is singular witha 24

3 power, there is
necessarily an inner-inner region, where there is a bala
between (Gx

21/2)xx and (Gx
23/2)xx , occurring in Eq.~B4!.

However, this inner-inner region appears to be dynamica
uninteresting with no apparent effect on the outer-inner
gion or later on the real axis dynamics and therefore will n
be discussed any further.

b. Intermediate time development

Beyond this initial stage described above, there come
next stage that corresponds to a choice

d15d5 2
7 ~B18!

in Eq. ~B4!. In this case, to put the equations in the simpl
form, it is prudent to choose

C1~ t !5E
0

t

dt8
q20z

„z0~ t8!,t8…

z0zz„z0~ t8!,t8…
C0~ t8!, ~B19!

C2~ t !5
z0zz„z0~ t !,t…

C0
2~ t !

, ~B20!

C0~ t !5@ i z̃0z
3/2
„z0~ t !,t…#2/7z0zz

1/7
„z0~ t !,t…q20z

2/7
„z0~ t !,t….

~B21!

The leading-order inner equations fort5O(B2/7), i.e., t
5O(1), becomes

Gt52Gx1x22~Gx
21/2!xx1Bl24/7k4~2 2

5 Gx
25/2!xx ,

~B22!

where

k45
âei4u0ẑ0z

1/2
„z0~0!,0…C0

3/2

2iz0zz
5/2

„z0~0!,0…q20z
„z0~0!,0…

. ~B23!

It is to be noted that the last term on the right of Eq.~B22! is
only to be included whenl5 4

7 .
For l5 4

7 , this is the earliest stage of evolution. In th
case, fort!1, the appropriate asymptotic solution is aga
given by the similarity solution~B12!, though with some-
what differing definitions ofx andt.

For l. 4
7 , we drop thek4 term in Eq.~B22!. The resulting

equation has been previously given by Tanveer@2# for zero
evolution for isotropic Hele-Shaw flow. Fort!1, an
asymptotic similarity solution to Eq.~B22! ~without thek4
term! is again given by Eq.~B15!, though with differing
definitions of x and t. Thus, this solution matches to th
earlier-time structure.

This similarity solution is the same for the singularitie
~A18!, provided we useb521. We know this equation ad
mits singularities that in the variablezz corresponds to
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zz;B2/3
t14/27

Ain
2 C2~ t !C0

21/3~ t !@z2z in~ t !#24/3, ~B24!

providedz is sufficiently close toz in(t). The location of an
inner 24

3 singularity is given by

z in~ t !5z0~ t !1
n in

C0~ t !
B2/7t2/9, ~B25!

for various values ofn in which were determined numericall
@2#. The condition

uz2z in~ t !u!B2/7uC0
21~ t !n int

2/9u ~B26!

defines the immediate neighborhood ofz in where the local
behavior~B24! is valid. z in(t) also defines the center of a
inner-inner region where the anisotropic term (Gx

3/2)xx in Eq.
~B4!, neglected in Eq.~B22!, becomes as important as th
(Gx

21/2)xx term. The time evolution in this inner-inner sca
is faster than here and it may be expected that there a st
state is reached fort5O(1). Since the inner-inner equation
appear to be dynamically unimportant, we do not discuss
any further.

For both cases,l. 4
7 and l5 4

7 , the dynamics fort
5O(1) remains uncertain. The solution to this proble
would require one to solve Eq.~B22! in the complex plane
with the given matching conditions at̀. How this can be
done, even numerically, remains an open problem.

However, forl> 4
7 and t@1, it is consistent to assum

that if x5O(1), then the solution to Eq.~B22! equilibrates
to a steady solution of

052Gx1x22~Gx
21/2!xx1Bl24/7k4~2 2

5 Gx
25/2!xx

~B27!

with matching conditionsGx→x at ` along certain sectors
Interestingly, notice that there is a differing long-tim

structure, following a moving disturbance, hencex2t
5O(1). In this case, the time dependence persists, bec
the solution cannot be time independent since the approp
far-field matching condition fort@ux2tu@1 must beGx

→t. In such a case, it is consistent to assume that

Gx;tF22~n!, where n5~x2t!t1/6, ~B28!

whereF(n) now satisfies

F23~F2 1
3 nF8!5122F-, ~B29!

with

F~n!→1 as n→` ~B30!

when argn is in ~2p, p/3!. There is a one-parameter fami
of such solutions that were found by Tanveer@2#. It was
surmised that the dynamics fort5O(1) selected a unique
solution out of this similarity solutions. It is to be noted th
the size of the effective inner region, in terms of thez vari-
able, implied by Eq.~B18! and the similarity variable~B29!,
is B2/7 t21/6, which becomesO(B1/3) when t5O(B22/7),
i.e., whent5O(1). This result is consistent with the scalin
results in the following section fort5O(1). Whether Eq.
~B28! is indeed the asymptotic similarity solution for larget
dy

is

se
te

remains uncertain and needs to be investigated. However
proceed further with the hypothesis that such is the case
its consequences appear to be consistent with direct num
cal solutions of the Hele-Shaw interface@11#, though other
large time dynamics of Eq.~B18! can presumably lead to th
same scales observed in the numerics. It is to be noted
the similarity solution~B29! has 2

3-power singularities, im-
plying thatGx has a24

3 singularity. Thus, there must be a
inner-inner region where the anisotropic term (Gx

3/2)xx in Eq.
~B4!, neglected in Eq.~B22!, enters into the equation.

c. Daughter singularity inner equations at longer times

On examining the relation betweenG andzz andx andt
to z and t, it is seen that the consequence of the similar
solution ~B28! with a singularity atn5n in is that zz is at
leastO(1) different from the zero-surface-energy solution
the neighborhood ofz5zd(t) @note thatz5z in that corre-
sponds ton5n in is within a B1/3 t21/6 neighborhood of
zd(t)# at least when 1@t@B2/7.

The differing limits of t→`, depending on whethe
x5O(1) or x2t5O(1) signify the separation of the inne
regions around a zeroz0(t) and the corresponding daught
zd(t) when t@O(B2/7). We now discuss the inner regio
around the daughter singularityzd(t) for t5O(1), when it
has completely separated from the inner region aroundz0(t).
However, we still examine time scales for which restrictio
Im zd,0 anduIm zdu@B1/3 are not violated.

In that case, we introduce inner variables

z2zd~ t !5B1/3
x

C0~ t !
, ~B31!

t52E
0

t q2z„zd~ t8!,t8…

C2~ t8!C0~ t8!
dt8, ~B32!

z~z,t !5z0„zd~ t !,t…1C2B1/3G~x,t!, ~B33!

where

C0~ t !5expF E
0

t

dt8q1z„zd~ t8!,t8…G ~B34!

and

C2~ t !52
C0

5~ t !

4z̃0z
3
„zd~ t !,t…q2z

2
„zd~ t !,t…

. ~B35!

Then the leading-order inner equation is given by

Gt2D~t!x52~2Gx
21/2!xx , ~B36!

where

D~t!5
z0z„zd~ t !,t…

C0~ t !
. ~B37!

The anisotropic terms neglected in Eq.~B36! areO(a)!1.
The matching condition to the outer-zero-surface-energy
lution requires
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Gx;
z0z„zd~ t !,t…

C2C0
~B38!

asx→` in a certain sector in the complexx plane. Note that
the most singular terms of the higher-order perturbation te
z1z

appearing in Eq.~135! are not relevant to the leading

order matching since they areO(Bl21/2,B1/6)!1 when uz
2zdu@B1/3.

Equation~B36! is equivalent to that derived for daught
singularities in the isotropic Hele-Shaw problem@Eq. ~7.4! in
@2##. We know little about its solution. We assume that
solution exists and satisfies the given matching conditi
The scaling information is essential in determining what h
pens when the daughter singularity impacts the real axis
shall be seen later. In Fig. 9, we display the various ou
inner, and inner-inner scales and solutions for the wea
anisotropic zero investigated above.

We end this section with a note that Eqs.~B31!–~B37!
hold even for1

2 ,l, 4
7 , though the earlier stages are com

plicated by apparently many different time scales that
have been unable to fully resolve. The end scaling resul
an O(B1/3) inner region aroundzd(t), wherezz differs from
the outer solution byO(1) and contains many actual sing
larities of zz ~hence called a daughter singularity cluste!,
holds for anyl. 1

2 .

2. Strongly anisotropic case: l< 1
2

As before, there are different time scales in the dynam
separately analyzed below.

a. Short-time dynamics

The first stage here corresponds to a choice in Eqs.~B1!–
~B4! of

d5d152~11l!/11, ~B39!

whereC0(t) is chosen in this case to be

C0~ t !5S âei4u0

2i
z̃0z

1/2
„z0~ t !,t…D 22/11

3z0zz
5/11

„z0~ t !,t…q20z

2/11
„z0~ t !,t…. ~B40!

The inner equation is the following parameter-free par
differential equation:

Gt1Gx5x1
2

5

]2

]x2 ~Gx
25/2!. ~B41!

The surface energy terms in Eq.~B4!, neglected in Eq.
~B41!, areO(B(427l)/11) andO(B8(11l)/11). Equation~B41!
has a similarity solution, asymptotically valid fort
!B2(11l)/11,

Gx5t2/13F22~n!, n5~x2t!/t2/13, ~B42!

where F(n) satisfies Eq.~B13!, with matching condition
~B14! for large unu for argn in (24p/13,4p/13). For t
5O(B2/11(11l)), this similarity solution becomes invalid
since all the terms in Eq.~B41! become equally important
m

.
-
as
r,
ly

e
of

s,

l

The dynamics at these early stages is complicated, and w
not further address this matter here.

b. Daughter singularity inner equations for intermediate time
scales: t5O(1)

We now seek a consistent inner-equation structure aro
z5zd(t) for t5O(1). We find that multiple inner regions
are necessary for consistency with the outer matching co
tion and the singularity structure the solutions inherit fro
earlier stages.

There is an important restriction on the time stage wh
the results in this section are valid, namely, Imzd,0 and that
uImzdu@B2(11l)/9. We introduce

z2zd~ t !5Bd
x

C0~ t !
, ~B43!

z~z,t !5z0„zd~ t !,t…1Bd2G~x,t!, ~B44!

where

C0~ t !5expF E
0

t

dt8q10z
„zd~ t8!,t8…G . ~B45!

On substituting Eqs.~B43!–~B45! into Eq. ~21! and collect-
ing all possible dominant contributions, we get

Bd2
dt

dt
Gt2q20z

„zd~ t !,t…Bd
x

C0

5
B12~1/2!d22~3/2!dC0

3/2

i z̃0z
3/2
„zd~ t !,t…

~22Gx
21/2!xx

2
âe2 i4u0C0

7/2B11l1~3/2!d22~7/2!d

2i z̃0z
7/2
„zd~ t !,t…

~ 2
3 Gx

3/2!xx

2
âei4u0z̃0z

1/2
„zd~ t !,t…B11l2~5/2!d21~1/2!d

2iC0
1/2 ~2 2

5 Gx
25/2!xx .

~B46!

The outermost inner scale must involve matching to
zero-surface-energy solution, i.e.,

G~x,t!;Bd2d2z0z
„zd~ t !,t…

x

C0~ t !
. ~B47!

In order for the matching condition on the leading-order
ner solutionG(x,t) to be free ofB, it is necessary to choos

d5d2 . ~B48!

Recall that the outer asymptotic expansion in a neighborh
of z5zd(t) behaves as

z;z0„zd~ t !,t…1z0z„zd~ t !,t…@z2zd~ t !#

2 2
3BA1@z2zd~ t !#23/22 2

7 âF1~ t !B11l~z2zd!27/2.

~B49!
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The outermost inner region

We notice from Eq.~B49! that the largest spatial scale
which this perturbation expansion becomes invalid is wh
z2zd5O(B2(11l)/9) suggesting that the largest of the inn
scale~in case there are nested inner scales! corresponds to

d25d5 2
9 ~11l!. ~B50!

With this choice ofd and henced2 , one obtains from Eq
~B46! the following leading-order equation:

Gt5q20z
„zd~ t !,t…

x

C0
. ~B51!

Surface energy terms do not enter this equation at the lea
order. The isotropic surface energy term in Eq.~B46! is
O(B123d)!1, while both the anisotropic surface ener
terms in Eq.~B46! areO(B11l23d)!1. We notice that at the
next order, isotropic surface energy terms are more impor
than the anisotropic ones. The solution~B51! that matches
with Eq. ~B49! is given by

G5z0z„zd~ t !,t…
x

C0
2

2â

7
F1~0!x27/2. ~B52!

This is clearly not valid asx→0 since the neglected term
Gx

3/2 must eventually become important with shrinkinguxu
and this is discussed next.

The innermost region, with evolution on an O„1… time scale

We notice that in the outermost spatial scale, neglec
surface energy terms play a role only on a long time sc
t5O(B3d21)@1. We now seek an inner scale where t
surface energy effects occur in the leading-order equa
over anO(1) time scale. The choice is

d15 2
7 ~11l!; d250 ~B53!

and

t5E
0

t âe2 i4u0C0
7/2~ t !

2i z̃0z
7/2
„zd~ t !,t…

. ~B54!

Then, Eq.~B46! leads to

Gt52 2
3 ~Gx

3/2!xx . ~B55!

The neglected isotropic surface energy term isO(B(423l)/7),
while the other anisotropic term in Eq.~B46! is
O(B8(11l)/7). The appropriate far-field matching conditio
for solution G above, corresponding to matching of th
outer-inner solution, is

Gx;âF1~0!x29/2. ~B56!

There exists a similarity solution satisfying this matchi
condition in the form~A16!, with b59/2. At singularitiesz in
of this solution, whereGx is locally proportional to (z
2z in)

2/3, one must require an inner-inner region where
neglected isotropic surface energy term in Eq.~B46! is the
same order as theGx

3/2 term.
n

ng

nt

d
le

n

e

Bridging the gap between thez2zd5O(B2/7(11l)) and
O(B2/9(11l)) spatial scales is an intermediate spatial sc
where there is a balance between the (Gx

3/2)xx anisotropy
term and the (Gx

21/2)xx isotropic surface energy term. Thi
intermediate spatial scale corresponds touz2zdu
5O(B10(11l)/(39)) if l, 4

9 andO(B(213l)/9) for l> 4
9 . The

time variation in this case occurs over a long time scale,
therefore for initial zeros anO(1) distance from the rea
axis, such effects will not be seen by the time the daugh
singularity cluster hits the real axis.

The structure of the various inner scales around an in
zero and a subsequent daughter singularity in the cas
strong anisotropy is the same as in Fig. 9, but with the f
lowing scales: ~a! outer daughter singularityzz;z0z

1aBF1(t)@z2zd(t)#29/2, ~b! size of the daughter singulari
ty’s inner regionO(B2/9(11l)), ~c! inner singularity~count-
ably infinite in number! zz;C(t)@z2z in(t)#2/3, ~d! outer
zero zz;z0zz@z2z0(t)#, ~e! size of the zero singularity’s
inner regionO(B2/11(11l)).

Lower bound on singularity strength for distinct inner regions

Recall that we had earlier found that the initial strength
a singularityuE0(0)u, not too close to the real axis, had to b
larger thanBb/3, otherwise any trace of this initial singularit
is wiped out by surface energy effects on a fast time scale
turns out that the same limitation occurs when we requ
that the inner regions around a singularity and a zero indu
by a singularity be distinct. Otherwise, traces of initial si
gularity or a zero cannot persist for long.

To understand these limitations, recall that foruE0(0)u
!Bb/3, the analysis of Sec. A 2 suggests that the inner sc
around such an initial singularity quickly expands to a s
O„uE0(0)u1/b

…. With local singular behaviorzz;A0(0)
1E0(0)@z2zs(0)#2b, with uE0(0)u!1 andA0(0) of order
O(1), it is clear there can be a zeroz0(0) nearby so that
uz0(0)2zs(0)u5O„uE0(0)u1/b

…. Thus, the inner region
around a singularity will have engulfed such a zero ve
quickly, before the corresponding zero-surface-energy sin
larity zs(t) or zeroz0(t) has a chance to move far. From th
viewpoint of an initial zero, induced by the weak singularit
the inner spatial scale for weak anisotropy implied by E
~B1!, ~B18!, and ~B21! suggests an inner region aroun
z0(0) that scales asB2/7zzz

21/7
„z0(0),0…. Since zzz„z0(t),t…

5O„uE0(0)u21/b
…, it follows that this inner spatial region

with O„B2/7uE0(0)u1/(7b)
… dimension includeszs(0), when

uE0(0)u!Bb/3. In the case of strong anisotropy, from Eq
~B1!, ~B39!, and~B40!, it follows that the inner region scale
asO„B2(11l)/11uE0(0)u5/(11b)

…, which may not includezs(0).
However, it is clear that in all cases, the initial traces o
weak distinct singularity and its corresponding zero a
wiped out completely by surface energy effects acting o
fast time scale.

On the other hand, ifuE0(0)u@Bb/3, following the scaling
results of Sec. A 2 and above, the inner regions are foun
be distinct.

Thus, we conclude that the cutoff singularity strength
defined by

uE0~0!ucutoff5O~Bb/3!. ~B57!

For a pole, this isO(B1/3).
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APPENDIX C: MOTION OF DAUGHTER SINGULARITIES
VERSUS ZERO SINGULARITIES

IN SMALL-RESIDUE EXACT SOLUTIONS

We noted before in Appendix B that corresponding
each initial zero ofzz , there exists a daughter singularit
zd(t), where an assumed asymptotic expansion forz in pow-
ers ofB becomes disordered, even thoughzd(t), in general,
is a regular point of the associated zero-surface-energy s
tion. zd(t), while not an actual singularity ofzz , defines the
center of a cluster of actual singularities~referred to as a
daughter singularity cluster! of zz , until the time thatzd(t)
impacts the real axis. Beyond this time, the concept o
daughter singularity cluster does not exist since the clu
appears to break up and disperse. Nonetheless, it is kn
that the impact of a daughter singularity cluster on the r
axis can singularly perturb an interface and cause it to v
from the corresponding zero-surface-energy solution e
when such solutions are smooth.

In @1#, we noted that, in the context of exact pole solutio
of the zero-surface-energy problem, zeros ofzz can impact
the real axis, even when they are initially atO(1) distance
from the real axis. Such impact causes formation of an in
facial cusp, and, beyond that time, the solution is unphysi
Thus, we naturally ask how it is that arbitrarily small surfa
energy modifies this cusp-formation conclusion of the cor
sponding zero-surface-energy solution. One possible
nario is that the interface comes close to forming a c
before surface energy effects become important and mo
the structure. A second option is that the interface ve
sharply away from the zero-surface-energy solution, due
the impact of daughter singularities, long before any z
comes close to the real axis. For specific solutions, p
analytical and numerical calculations for the isotropic He
Shaw problem suggest the latter explanation is the right
for an exterior problem where a sink is located at`. The
question remains: Is the latter scenario correct in gene
Does a daughter singularity necessarily impact the real
before the corresponding zero, thus preventing an inter
from developing a cusp? In general, we do not know
answer to that question. However, we consider in this sec
a wide class of exact solutions containing large numbers
poles with small residues~strengths!, and find our intuition
verified. Further, numerical solutions for special cases,
described in Sec. C 3, support the same conclusion, e
when the residues arenot small.

We found in Sec. IV, that, as for the isotropic Hele-Sha
problem@2#, the daughter singularity trajectory is govern
by the same equations as any other zero-surface-energy
gularity, provided the daughter singularity has not hit the r
axis. ~As mentioned above, the daughter singularity conc
does not make sense beyond the impact time.! In @1#, we
examined the zero-surface-energy problem in great detai
the class of initial conditions for which all singularities ofzz

are poles. In this section, we will now add the daughter
jectories to these pole solutions.

1. Daughter singularity equations

When all the singularities of theB50 solution are poles
of zz , the integral of the governing equation for the daugh
singularity dynamics, Eq.~131!, can be evaluated with th
lu-
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residue theorem, using a contour in Im(z).0, just as in the
first paper for the pole solutions. The resulting system
equations for the daughter trajectories becomes

żd j~ t !522i (
n51

N11
1

z̃zz„z0n* ~ t !,t…zz„z0n* ~ t !,t…@z0n* ~ t !2zd j~ t !#
,

~C1!

zd j~0!5z0 j~0!, j 51, . . . ,N11. ~C2!

Recall from the first paper that there areN poles andN11
zeros, and so there areN11 daughters, one for each zero.
the numerical solution of the pole equations, we could ea
append Eq.~C1! to the system of equations in the first pap
and numerically obtain the daughter trajectories while
obtain the pole trajectories.

For the special case of an Ivantsov initial condition w
Ej50 in Eq. ~27!, the only zero remaining is the Ivantso
zeroz0N11 . Therefore, only the Ivantsov daughter singula
ity at z5zdN11 remains in Eq.~C1!, and its governing equa
tion reduces to

z0N11~ t !52 i , ~C3!

żdN11~ t !52
1

i 2zdN11
, ~C4!

zdN11~0!52 i . ~C5!

This equation has the solution

zdN11~ t !5 i ~12A422t !, ~C6!

indicating that the Ivantsov zero moves along the imagin
axis from z52 i to the origin, hitting att5 3

2 . This simple
case demonstrates again that the singular nature of
B→0 limit is not limited only to the vicinity of the zeros an
singularities of theB50 solution. For B[0, an initial
Ivantsov parabola remains unchanged for all time. Howev
for any small nonzero surface energy, a daughter singula
impacts the origin in thez plane~crystal tip in thez plane! at
t5 3

2 , signaling the time when arbitrarily small surface e
ergy will generally cause the actual solution to veer aw
from the Ivantsov parabola.

2. Small-residue theory

We now incorporate the daughter singularities into t
extensively developed small-residue theory of@1#, in which
all the Ej5eÊj , e!1. As we shall see, this approach mee
with moderate success only. There are thereforeN11 zeros.
The firstN of the related daughters are associated with thN
poles; the (N11)st daughter is associated with the Ivants
zero. As in the first paper, we divide theoretical consid
ations into several cases, according to the size ofhs , h0 ,
and nowhd , but in this paper we consider only the initia
segments of the trajectories for whichhs , hd , h0@O(e)
only.

As in @1#, we begin by defining a regular asymptotic e
pansion for the daughter singularities. If all the poles are
far from the real axis thatuhs ju@e, the motion of the daugh-
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ter singularities is governed by

zd j~ t !;zd0 j
~ t !1ezd1 j

~ t !1O~e2!, ~C7!

q1~z,t;B50!;q10
~z,t !1eq11

~z,t !1O~e2!, ~C8!

żd0 j
~ t !52q10

„zd0 j
~ t !,t…, ~C9!

żd1 j
~ t !52q10

„zd0 j
~ t !,t…zd1 j

~ t !1q11
„zd0 j

~ t !,t…,
~C10!

zd0 j
~0!5z00 j

~0!, ~C11!

zd1 j
~0!5z01 j

~0!. ~C12!

Note that all the 0 and 1 perturbation subscripts refer
powers ofe, not powers ofB, since all of the analysis in
this section is for zero surface energy. Recall from@1# that
z00 j

5zs0 j
for j 51,...,N. Therefore, the equations for the fir

N daughter singularities~the ‘‘companion’’ daughter singu
larities! are identical to those for the pole singularities, w
the differing initial conditions forzd1 j

. We can thus find the
location of the firstN daughter singularities in terms of th
pole locations,

zd j~ t !;zs j~ t !2e
iÊ j

i 2zs j~ t ! S i 2zs j~0!

i 1zs j~0! D1O~e2!,

j 51, . . . ,N. ~C13!

Note the resemblance to the equation for the companion
ros from the first paper. Also, since the outer solution for
pole breaks down ashs→0, this outer solution for the
daughters will also break down ashd→0. We see that the
first N daughter singularities remain inO(e) neighborhoods
of their companion pole and zero singularities. Therefore,
supposition from Sec. IV that daughter singularities mo
away from the zero singularities is true in terms of theB
scales, but not in terms ofe scales. Recall from the first pape
that the zero singularities depend only on the instantane
location of the poles, but, from Eq.~C13!, the daughter sin-
gularities also depend on where the pole started. Since
pole also depends on its initial condition, developing a cr
rion for the daughter singularity collision with the real ax
analogous to that for the zeros found in the first paper
quite a task.

The (N11)st daughter singularity~the Ivantsov daugh-
ter!, however, is special in that there is no companion p
and the Ivantsov zero remains in the neighborhood ofz5
2 i . Therefore, the Ivantsov daughter will proceed to t
neighborhood of the origin alone according to

zdN11~ t !; i ~12A422t !1O~e!, ~C14!

which, to the leading order, is the same as the one for
Ivantsov initial condition~C6!. Unlike the firstN daughter
singularities, though, this expansion is regular ashd→0.
Once again, we see very nicely that the Ivantsov daug
singularity reaches the neighborhood of the origin att5 3

2
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1O(e). In fact, the daughter singularity will hit the axis i
finite time, unless by chance it is shielded by another sin
larity, say a pole.

Although Eq. ~C14! makes it clear that the Ivantso
daughter singularity hits the real axis in finite time, we a
also interested in finding the conditions that determ
whether or not the companion daughter singularities re
the vicinity of the real axis before poles or zeros. The eq
tions for the imaginary coordinates of the zero and daugh
singularities are simplest if they are written relative to t
pole ~for 2hs@e),

ImS zd j2zs j

e D ~ t !

5ImS z0 j2zs j

e D ~0!

3
js j~0!js j~ t !1@12hs j~0!#@12hs j~ t !#

js j
2 ~ t !1@12hs j~ t !#2

1ReS z0 j2zs j

e D ~0!

3
js j~0!@12hs j~ t !#2js j~ t !@12hs j~0!#

js j
2 ~ t !1@12hs j~ t !#2 , ~C15!

ImS z0 j2zs j

e D ~ t !52
Re~Êj !js j~ t !1Im~Êj !@11hs j~ t !#

js j
2 ~ t !1@11hs j~ t !#2 ,

~C16!

ReS z0 j2zs j

e D ~ t !52
Re~Êj !@11hs j~ t !#2Im~Êj !js j~ t !

js j
2 ~ t !1@11hs j~ t !#2 .

~C17!

It is generally difficult to determine the sign of Im@(zdj
2zsj)/e#(t). The equations simplify dramatically, however,
we start the pole on the imaginary axis between the Ivant
zero and the real axis, so that 0,2hs j(t)<2hs j(0),1. In
this case, the imaginary parts become

ImS zd j2zs j

e D ~ t !52
Im~Êj !

12hs j~ t !

12hs j~0!

11hs j~0!
, ~C18!

ImS z0 j2zs j

e D ~ t !52
Im~Êj !

11hs j~ t !
, ~C19!

which can be combined to give us

ImS zd j2z0 j

e D ~ t !5ImS z0 j2zs j

e D ~ t !

3
2@hs j~ t !2hs j~0!#

@12hs j~ t !#@11hs j~0!#
.

~C20!

The factor on the right is positive, therefore, if the zero
closer to the real axis than the pole, which means Im@(z0j
2zsj)/e#.0, then the daughter singularity is closer sti
Im@(zdj2z0j)/e#.0. On the other hand, if the pole is closer
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the real axis, the daughter singularity and the zero are b
shielded by the pole. The Ivantsov daughter singula
zdN11 will be initially shielded for both of these cases, to
If Re(Ej)50, then the pole will continue heading for th
origin for all time, otherwise the pole will head forj56`
once it is close enough, as in the first paper. If the p
should leave the imaginary axis, then the Ivantsov daug
singularity will no longer be shielded and will continu
heading for the origin. If the pole starts on the imagina
axis below z52 i , then the Ivantsov daughter singulari
gets to the real axis before the pole-zero-daughter gro
Observe that in all cases discussed so far, the zero ca
be closest to the real axis; it is always shielded by the p
or daughter singularity. Furthermore, the only way to prev
the Ivantsov daughter from reaching the origin is
have Re(Ej)50, which corresponds to an indentation runni
along the longitudinal axis of the crystal, a tip-splittin
situation. For initial conditions that do not lead to tip spl
ting, the Ivantsov daughter will reach the crystal tip
t5 3

2 1O(e) and the zero-surface-energy solution will n
longer completely describe the leading-order crystal evo
tion.

Equation ~C15! also simplifies if we start the pole o
hs(0)521, with ujs j(0)u@O(e) to maintain consistency
with the assumptions of the first paper. For 1@2hs(t)@e,
the imaginary parts become

ImS zd j2z0 j

e D ~ t !5
2

js j
2 ~ t !11 S 2Re~Êj !

1

js j~0!

1Im~Êj !
js j~0!2js j~ t !

js j~0! D , ~C21!

ImS z0 j2zs j

e D ~ t !52
Re~Êj !js j~ t !1Im~Êj !

js j
2 ~ t !11

. ~C22!

In order for the zero to approach the real axis first, we n
Im@(zdj2z0j)/e#,0 and Im@(z0j2zsj)/e#.0. This is possible if

Re~Êj !

js j~0!2js j~ t !
,Im~Êj !,2Re~Êj !js j~ t !, ~C23!

so that there is a range of parameters and initial conditi
that allows the zero singularity to get ahead of the pole
daughter singularities. This may be a temporary conditi
however, since the daughter singularity’s expansion bre
down ashd→0 and inner equations adjacent to the real a
may allow the daughter singularity to catch up to the z
singularity. These inner equations proved to be analytic
intractable, so we turn now to the numerical solutions of
governing equations~C1! and ~C2!.

3. Numerical solutions

We turn now to the task of obtaining the daughter traj
tories numerically, by modifying the computer program us
in @1# to include Eq.~C1!, for the case when the initial dis
tribution of singularities includes poles only. We find th
th
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when the daughter singularity approaches the real axis fi
then the zero and pole are always behind the daughter
the daughter hits the real axis in finite time. Next, if the po
approaches first, then the zero and daughter are alw
shielded by the pole. On the other hand, if the zero
proaches first, then once it is close enough to the real ax

FIG. 10. Simulation showing~a! the trajectory of a pole, zero
and daughter group,~b! the zero singularity’s temporary lead ove
the daughter and pole singularities, followed by the daughter sin
larity’s acceleration and impact with the real axis ahead of the z
singularity, preventing cusp formation.
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generates a speed-up in the daughter singularity, which
just enough time to get ahead of the zero and reach the
axis first ~Fig. 10!.

Therefore, we tentatively conclude that the zero singul
ties never hit the real axis first; they are always shielded
the pole singularities or outrun by the daughter singularit
even if the zero is temporarily ahead of both. Therefore,
role of surface energy is to prevent an initially smooth int
as
al

i-
y

s,
e
-

face from ever getting close to formation of a cusp—in sp
of the fact that the corresponding zero-surface-energy s
tion predicts a cusp. The daughter singularity impact cau
the solution to veer dramatically from theB[0 solution.
Surprisingly, such a dramatic departure from theB[0 solu-
tion occurs in spite of the fact that the curvature term in
full equations, evaluated for the zero-surface-energy so
tion, is not large.
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